shape(data, metric = c("all-quick", "all", "psv", "psr", "mpd", "mntd", "pd",
"colless", "gamma", "taxon", "eigen.sum", "eed", "hed", "dist.fd"),
sqrt.phy = FALSE, traitgram = NULL, traitgram.p = 2, ext.dist = NULL,
which.eigen = 1, remove.errors = TRUE, ...)comparative.comm objectall-quick)
calculates everything bar fd.dist, all calculates
everything. Individually call-able metrics are: psv,
psr, mpd, mntd, eigen.sum)funct.phylo.dist (phyloWeight; the `a' parameter),
causing analysis on a distance matrix reflecting both traits and
phylogeny (0 --> only phylogeny, 1 --> only traits; see
funtraitgram when calling funct.phylo.dist.phy.structure list object of metric values. Use
coefs to extract a summary metric table, or examine each
individual metric (which gives more details for each) by calling
print on the output (i.e., type output in the example
below).PSV,PSR Helmus M.R., Bland T.J., Williams C.K. & Ives A.R. (2007). Phylogenetic measures of biodiversity. American Naturalist, 169, E68-E83.
PD Faith D.P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
colless Colless D.H. (1982). Review of phylogenetics: the theory and practice of phylogenetic systematics. Systematic Zoology, 31, 100-104.
gamma Pybus O.G. & Harvey P.H. (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. _Proceedings of the Royal Society of London. Series B. Biological Sciences 267: 2267--2272.
taxon Clarke K.R. & Warwick R.M. (1998). A taxonomic distinctness index and its statistical properties. J. Appl. Ecol., 35, 523-531.
eigen.sum Diniz-Filho J.A.F., Cianciaruso M.V., Rangel T.F. & Bini L.M. (2011). Eigenvector estimation of phylogenetic and functional diversity. Functional Ecology, 25, 735-744.
eed,hed (i.e., Eed, Hed) Cadotte M.W., Davies T.J., Regetz J., Kembel S.W., Cleland E. & Oakley T.H. (2010). Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 13, 96-105.
evenness dispersion dissimilaritydata(laja)
data <- comparative.comm(invert.tree, river.sites, invert.traits)
(output<-shape(data))
str(output)
shape(data, "colless")
shape(data, "eigen.sum", which.eigen=2)Run the code above in your browser using DataLab