
This function estimates the similarity between two frequency spectra.
simspec(spec1, spec2, f = NULL, mel = FALSE,
norm = FALSE, PMF = FALSE,
plot = FALSE, type = "l",
lty =c(1, 2, 3), col = c(2, 4, 1),
flab = NULL, alab = "Amplitude (percentage)",
flim = NULL, alim = NULL,
title = TRUE, legend = TRUE, ...)
a logical, if TRUE
the (htk-)mel scale is used.
a logical, if TRUE
spec1
and spec2
are normalised (scaled) between 0 and 1.
a logical, if TRUE
spec1
and spec2
are
transformed into probability mass functions.
logical, if TRUE
plots both spectra and similarity function
(by default FALSE
).
if plot
is TRUE
, type of plot that should be drawn.
See plot
for details (by default "l" for lines).
a vector of length 3 for the line type of spec1
,
spec2
and of the similarity function if type
="l".
a vector of length 3 for the colour of spec1
,
spec2
, and the similarity function.
title of the frequency axis.
title of the amplitude axis.
the range of frequency values.
range of amplitude axis.
logical, if TRUE
, adds a title with S value.
logical, if TRUE
adds a legend to the plot.
other plot
graphical parameters.
The similarity index is returned. This value is in %.
When plot
is TRUE
, both spectra and the similarity function are
plotted on the same graph. The similarity index is the mean of this function.
Spectra similarity is assessed according to:
Deecke, V. B. and Janik, V. M. 2006. Automated categorization of bioacoustic signals: avoiding perceptual pitfalls. Journal of the Acoustical Society of America, 119: 645-653.
spec
, meanspec
, corspec
,
diffspec
, diffenv
, kl.dist
,
ks.dist
, logspec.dist
, itakura.dist
# NOT RUN {
a<-noisew(f=8000,d=1)
b<-synth(f=8000,d=1,cf=2000)
c<-synth(f=8000,d=1,cf=1000)
d<-noisew(f=8000,d=1)
speca<-spec(a,f=8000,at=0.5,plot=FALSE)
specb<-spec(b,f=8000,at=0.5,plot=FALSE)
specc<-spec(c,f=8000,at=0.5,plot=FALSE)
specd<-spec(d,f=8000,at=0.5,plot=FALSE)
simspec(speca,speca)
simspec(speca,specb)
simspec(speca,specc,plot=TRUE)
simspec(specb,specc,plot=TRUE)
#[1] 12.05652
simspec(speca,specd,plot=TRUE)
## mel scale
require(tuneR)
data(orni)
data(tico)
orni.mel <- melfcc(orni, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
orni.mel.mean <- apply(orni.mel$aspectrum, MARGIN=2, FUN=mean)
tico.mel <- melfcc(tico, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
tico.mel.mean <- apply(tico.mel$aspectrum, MARGIN=2, FUN=mean)
simspec(orni.mel.mean, tico.mel.mean, f=22050, mel=TRUE, plot=TRUE)
# }
Run the code above in your browser using DataLab