skewnormal1(lshape = "identity", ishape = NULL, nsimEIM = NULL)
Links
and
CommonVGAMffArguments
."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The mean of the distribution is
$\mu=\alpha \sqrt{2/(\pi (1+\alpha^2))}$
and these are returned as the fitted values.
The variance of the distribution is $1-\mu^2$.
The Newton-Raphson algorithm is used unless the nsimEIM
argument is used.
Azzalini, A. and Capitanio, A. (1999) Statistical applications of the multivariate skew-normal distribution. Journal of the Royal Statistical Society, Series B, Methodological, 61, 579--602.
snorm
,
normal1
,
fnormal1
.sdata <- data.frame(y = rsnorm(nn <- 1000, shape = 5))
fit <- vglm(y ~ 1, skewnormal1, sdata, trace = TRUE)
coef(fit, matrix = TRUE)
head(fitted(fit), 1)
with(sdata, mean(y))
with(sdata, hist(y, prob = TRUE))
x <- with(sdata, seq(min(y), max(y), len = 200))
with(sdata, lines(x, dsnorm(x, shape = Coef(fit)), col = "blue"))
sdata <- data.frame(x2 = runif(nn))
sdata <- transform(sdata, y = rsnorm(nn, shape = 1 + 2*x2))
fit <- vglm(y ~ x2, skewnormal1, sdata, trace = TRUE, crit = "coef")
summary(fit)
Run the code above in your browser using DataLab