Learn R Programming

⚠️There's a newer version (1.18.5) of this package.Take me there.

pROC

An R package to display and analyze ROC curves.

For more information, see:

  1. Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-2105-12-77
  2. The official web page on ExPaSy
  3. The CRAN page
  4. My blog
  5. The FAQ

Stable

The latest stable version is best installed from the CRAN:

install.packages("pROC")

Help

Once the library is loaded with library(pROC), you can get help on pROC by typing ?pROC.

Getting started

If you don't want to read the manual first, try the following:

Loading

library(pROC)
data(aSAH)

Basic ROC / AUC analysis

roc(aSAH$outcome, aSAH$s100b)
roc(outcome ~ s100b, aSAH)

Smoothing

roc(outcome ~ s100b, aSAH, smooth=TRUE) 

more options, CI and plotting

roc1 <- roc(aSAH$outcome,
            aSAH$s100b, percent=TRUE,
            # arguments for auc
            partial.auc=c(100, 90), partial.auc.correct=TRUE,
            partial.auc.focus="sens",
            # arguments for ci
            ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE,
            # arguments for plot
            plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE,
            print.auc=TRUE, show.thres=TRUE)

    # Add to an existing plot. Beware of 'percent' specification!
    roc2 <- roc(aSAH$outcome, aSAH$wfns,
            plot=TRUE, add=TRUE, percent=roc1$percent)        

Coordinates of the curve

coords(roc1, "best", ret=c("threshold", "specificity", "1-npv"))
coords(roc2, "local maximas", ret=c("threshold", "sens", "spec", "ppv", "npv"))

Confidence intervals

# Of the AUC
ci(roc2)

# Of the curve
sens.ci <- ci.se(roc1, specificities=seq(0, 100, 5))
plot(sens.ci, type="shape", col="lightblue")
plot(sens.ci, type="bars")

# need to re-add roc2 over the shape
plot(roc2, add=TRUE)

# CI of thresholds
plot(ci.thresholds(roc2))

Comparisons

    # Test on the whole AUC
    roc.test(roc1, roc2, reuse.auc=FALSE)

    # Test on a portion of the whole AUC
    roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),
             partial.auc.focus="se", partial.auc.correct=TRUE)

    # With modified bootstrap parameters
    roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),
             partial.auc.correct=TRUE, boot.n=1000, boot.stratified=FALSE)

Sample size

    # Two ROC curves
    power.roc.test(roc1, roc2, reuse.auc=FALSE)
    power.roc.test(roc1, roc2, power=0.9, reuse.auc=FALSE)

    # One ROC curve
    power.roc.test(auc=0.8, ncases=41, ncontrols=72)
    power.roc.test(auc=0.8, power=0.9)
    power.roc.test(auc=0.8, ncases=41, ncontrols=72, sig.level=0.01)
    power.roc.test(ncases=41, ncontrols=72, power=0.9)

Development

Installing the development version

Download the source code from git, unzip it if necessary, and then type R CMD INSTALL pROC. Alternatively, you can use the devtools package by Hadley Wickham to automate the process (make sure you follow the full instructions to get started):

if (! requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("xrobin/pROC")

Check

To run all automated tests, including slow tests:

cd .. # Run from parent directory
VERSION=$(grep Version pROC/DESCRIPTION | sed "s/.\+ //")
R CMD build pROC
RUN_SLOW_TESTS=true R CMD check pROC_$VERSION.tar.gz

Release steps

  1. Build & check package: R CMD build pROC && R CMD check --as-cran pROC_1.12.0.tar.gz
  2. Check with slow tests: RUN_SLOW_TESTS=true R CMD check pROC_1.12.0.tar.gz
  3. Check with R-devel: rhub::check_with_rdevel()
  4. Chec reverse dependencies: devtools::revdep_check(libpath = rappdirs::user_cache_dir("revdep_lib"), srcpath = rappdirs::user_cache_dir("revdep_src"))
  5. Update Version and Date in DESCRIPTION
  6. Update version and date in NEWS
  7. Create a tag: git tag v1.12.0
  8. Submit to CRAN

Copy Link

Version

Install

install.packages('pROC')

Monthly Downloads

160,346

Version

1.13.0

License

GPL (>= 3)

Maintainer

Last Published

September 24th, 2018

Functions in pROC (1.13.0)

lines.roc

Add a ROC line to a ROC plot
multiclass.roc

Multi-class AUC
ggroc.roc

Plot a ROC curve with ggplot2
cov.roc

Covariance of two paired ROC curves
plot.ci

Plot confidence intervals
pROC-package

pROC
coords

Coordinates of a ROC curve
roc.test

Compare the AUC of two ROC curves
smooth

Smooth a ROC curve
var.roc

Variance of a ROC curve
plot.roc

Plot a ROC curve
power.roc.test

Sample size and power computation for ROC curves
groupGeneric

pROC Group Generic Functions
has.partial.auc

Does the ROC curve have a partial AUC?
print

Print a ROC curve object
roc

Build a ROC curve
ci.thresholds

Compute the confidence interval of thresholds
aSAH

Subarachnoid hemorrhage data
are.paired

Are two ROC curves paired?
ci.auc

Compute the confidence interval of the AUC
ci.sp

Compute the confidence interval of specificities at given sensitivities
ci.se

Compute the confidence interval of sensitivities at given specificities
auc

Compute the area under the ROC curve
ci

Compute the confidence interval of a ROC curve
ci.coords

Compute the confidence interval of arbitrary coordinates