snm(raw.dat, bio.var=NULL, adj.var=NULL, int.var=NULL, weights=NULL, spline.dim = 4, num.iter = 10, lmer.max.iter=1000, nbins=20, rm.adj=FALSE, verbose=TRUE, diagnose=TRUE)
model.matrix
) or data frame with $n$ rows of the biological variables. If NULL, then all probes are treated as "null" in the algorithm.
model.matrix
) or data frame with $n$ rows of the probe-specific adjustment variables. If NULL, a model with an intercept term is used.
lmer
iterations that are permitted. Set lmer.max.iter=NULL
if no maximum is desired.
snm
function.
snm
algorithm. These values should converge and any non-convergence suggests a problem with the data, the assumed model, or both
model.matrix
, plot.snm
, fitted.snm
, summary.snm
, sim.singleChannel
, sim.doubleChannel
, sim.preProcessed
, sim.refDesign
singleChannel <- sim.singleChannel(12345)
snm.obj <- snm(singleChannel$raw.data,
singleChannel$bio.var,
singleChannel$adj.var,
singleChannel$int.var)
ks.test(snm.obj$pval[singleChannel$true.nulls],"punif")
plot(snm.obj)
summary(snm.obj)
snm.fit = fitted(snm.obj)
Run the code above in your browser using DataLab