
sobol2002
implements the Monte Carlo estimation of
the Sobol' indices for both first-order and total indices at the same
time (alltogether $2p$ indices), at a total cost of $(p+2)
\times n$ model evaluations. These are called the Saltelli estimators.sobol2002(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
## S3 method for class 'sobol2002':
tell(x, y = NULL, return.var = NULL, \dots)
## S3 method for class 'sobol2002':
print(x, \dots)
## S3 method for class 'sobol2002':
plot(x, ylim = c(0, 1), ...)
predict
method,
defining the model to analyze."sobol"
storing the state of the
sensitivity study (parameters, data, estimates).x
.model
which are passed
unchanged each time it is calledsobol2002
returns a list of class "sobol2002"
, containing all
the input arguments detailed before, plus the following components:data.frame
containing the design of experiments.return.var
(for example, bootstrap outputs V.boot
,
S.boot
and T.boot
)."sobol2002"
.
Functions "sobolEff"
, "soboljansen"
and "sobolmartinez"
do not suffer from this problem.sobol, sobol2007, soboljansen, sobolmartinez, sobolEff, sobolmara, sobolGP,sobolMultOut
# Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobol2002(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)
Run the code above in your browser using DataLab