# NOT RUN {
rmvn <- function(n, mu=0, V = matrix(1)){
p <- length(mu)
if(any(is.na(match(dim(V),p))))
stop("Dimension problem!")
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
set.seed(1)
n <- 100
coords <- cbind(runif(n,0,1), runif(n,0,1))
X <- as.matrix(cbind(1, rnorm(n)))
B <- as.matrix(c(1,5))
p <- length(B)
sigma.sq <- 2
tau.sq <- 0.1
phi <- 3/0.5
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, X%*%B + w, sqrt(tau.sq))
n.samples <- 1000
starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)
##too restrictive of prior on beta
priors.1 <- list("beta.Norm"=list(rep(0,p), diag(1,p)),
"phi.Unif"=c(3/1, 3/0.1), "sigma.sq.IG"=c(2, 2),
"tau.sq.IG"=c(2, 0.1))
##more reasonable prior for beta
priors.2 <- list("beta.Norm"=list(rep(0,p), diag(1000,p)),
"phi.Unif"=c(3/1, 3/0.1), "sigma.sq.IG"=c(2, 2),
"tau.sq.IG"=c(2, 0.1))
cov.model <- "exponential"
n.report <- 500
verbose <- TRUE
m.1 <- spLM(y~X-1, coords=coords, starting=starting,
tuning=tuning, priors=priors.1, cov.model=cov.model,
n.samples=n.samples, verbose=verbose, n.report=n.report)
m.2 <- spLM(y~X-1, coords=coords, starting=starting,
tuning=tuning, priors=priors.2, cov.model=cov.model,
n.samples=n.samples, verbose=verbose, n.report=n.report)
##non-spatial model
m.3 <- spLM(y~X-1, n.samples=n.samples, verbose=verbose, n.report=n.report)
burn.in <- 0.5*n.samples
##recover beta and spatial random effects
m.1 <- spRecover(m.1, start=burn.in, verbose=FALSE)
m.2 <- spRecover(m.2, start=burn.in, verbose=FALSE)
##lower is better for DIC, GPD, and GRS
print(spDiag(m.1))
print(spDiag(m.2))
print(spDiag(m.3))
# }
Run the code above in your browser using DataLab