Read from a generic source into a Spark DataFrame.
spark_read_source(sc, name, source, options = list(), repartition = 0,
memory = TRUE, overwrite = TRUE, columns = NULL, ...)
A spark_connection
.
The name to assign to the newly generated table.
A data source capable of reading data.
A list of strings with additional options. See http://spark.apache.org/docs/latest/sql-programming-guide.html#configuration.
The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning.
Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?)
Boolean; overwrite the table with the given name if it already exists?
A vector of column names or a named vector of column types.
Optional arguments; currently unused.
Other Spark serialization routines: spark_load_table
,
spark_read_csv
,
spark_read_jdbc
,
spark_read_json
,
spark_read_libsvm
,
spark_read_parquet
,
spark_read_table
,
spark_read_text
,
spark_save_table
,
spark_write_csv
,
spark_write_jdbc
,
spark_write_json
,
spark_write_parquet
,
spark_write_source
,
spark_write_table
,
spark_write_text