
Function taking family and weights arguments for spatial autoregression model estimation by Maximum Likelihood, using dense matrix methods, not suited to large data sets with thousands of observations. With one of the sparse matrix methods, larger numbers of observations can be handled, but the interval=
argument should be set. The implementation is GLS using the single spatial coefficient value, here termed lambda, found by line search using optimize
to maximise the log likelihood.
spautolm(formula, data = list(), listw, weights,
na.action, family = "SAR", method="eigen", verbose = NULL, trs=NULL,
interval=NULL, zero.policy = NULL, tol.solve=.Machine$double.eps,
llprof=NULL, control=list())
# S3 method for spautolm
summary(object, correlation = FALSE, adj.se=FALSE,
Nagelkerke=FALSE, ...)
A list object of class spautolm
:
a list, with items:
ML coefficient estimates
ML sum of squared errors
ML residual variance
ML coefficient covariance matrix (before multiplying by s2)
non-spatial component of fitted.values
spatial component of fitted.values
sum of non-spatial and spatial components of fitted.values
difference between observed and fitted values
ML autoregressive coefficient
log likelihood for fitted model
log likelihood for model with lambda=0
the call used to create this object
number of parameters estimated
if not NULL, details of aliased variables
Jacobian method chosen
family chosen
zero.policy used
case weights used
the line search interval used
processing timings
(possibly) named vector of excluded or omitted observations if non-default na.action argument used
if not NULL, a list with components lambda and ll of equal length
Numerical Hessian-based standard error of lambda
Numerical Hessian-based variance-covariance matrix
covariates used in model fitting
response used in model fitting
weights used in model fitting
the desired accuracy of the optimization - passed to optimize()
(default=.Machine$double.eps^(2/3)
)
default NULL, then set to (method != "eigen") internally; use fdHess
to compute an approximate Hessian using finite differences when using sparse matrix methods; used to make a coefficient covariance matrix when the number of observations is large; may be turned off to save resources if need be
default FALSE, use fdHess
from nlme, if TRUE, use optim
to calculate Hessian at optimum
default “optimHess”, may be “nlm” or one of the optim
methods
default 2; used for preparing the Cholesky decompositions for updating in the Jacobian function
if NULL (default), set to FALSE to use a simplicial decomposition for the sparse Cholesky decomposition and method “Matrix_J”, set to as.logical(NA)
for method “Matrix”, if TRUE, use a supernodal decomposition
default 5; highest power of the approximating polynomial for the Chebyshev approximation
default 16; number of random variates
default 30; number of products of random variates matrix and spatial weights matrix
default “MC”, used with method “moments”; alternatives “mult” and “moments”, for use if trs
is missing, trW
default TRUE, used with method “moments” to compute the Smirnov/Anselin correction term
default TRUE, used with method “moments” to truncate the Smirnov/Anselin correction term
default “LU”, may be “MC”
default 200, as in SE toolbox; the size of the first stage lndet grid; it may be reduced to for example 40
default 2000, as in SE toolbox; the size of the second stage lndet grid
default TRUE; if the method is not “eigen”, use asymmetric covariances rather than numerical Hessian ones if n <= small
default 1500; threshold number of observations for asymmetric covariances when the method is not “eigen”
default NULL, may be used to pass a pre-computed SE toolbox style matrix of coefficients and their lndet values to the "SE_classic" and "SE_whichMin" methods
default FALSE; used in “LU_prepermutate”, note warnings given for lu
method
default NULL; may be used to pass a pre-computed vector of eigenvalues
This implementation is based on lm.gls
and errorsarlm
. In particular, the function does not (yet) prevent asymmetric spatial weights being used with "CAR" family models. It appears that both numerical issues (convergence in particular) and uncertainties about the exact spatial weights matrix used make it difficult to reproduce Cressie and Chan's 1989 results, also given in Cressie 1993.
Note that the fitted() function for the output object assumes that the response variable may be reconstructed as the sum of the trend, the signal, and the noise (residuals). Since the values of the response variable are known, their spatial lags are used to calculate signal components (Cressie 1993, p. 564). This differs from other software, including GeoDa, which does not use knowledge of the response variable in making predictions for the fitting data.
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion; Ord, J. K. 1975 Estimation methods for models of spatial interaction, Journal of the American Statistical Association, 70, 120-126; Waller, L. A., Gotway, C. A. 2004 Applied spatial statistics for public health, Wiley, Hoboken, NJ, 325-380; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York, 548-568; Ripley, B. D. 1981 Spatial statistics, Wiley, New York, 88-95; LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton.
# NOT RUN {
nydata <- st_read(system.file("shapes/NY8_bna_utm18.gpkg", package="spData")[1], quiet=TRUE)
lm0 <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata)
summary(lm0)
lm0w <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata, weights=POP8)
summary(lm0w)
suppressMessages(nyadjmat <- as.matrix(foreign::read.dbf(system.file(
"misc/nyadjwts.dbf", package="spData")[1])[-1]))
suppressMessages(ID <- as.character(names(foreign::read.dbf(system.file(
"misc/nyadjwts.dbf", package="spData")[1]))[-1]))
identical(substring(ID, 2, 10), substring(as.character(nydata$AREAKEY), 2, 10))
nyadjlw <- mat2listw(nyadjmat, as.character(nydata$AREAKEY))
listw_NY <- nb2listw(nyadjlw$neighbours, style="B")
esar0 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY)
summary(esar0)
system.time(esar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data=nydata, listw=listw_NY, family="SAR", method="eigen"))
res <- summary(esar1f)
print(res)
sqrt(diag(res$resvar))
sqrt(diag(esar1f$fit$imat)*esar1f$fit$s2)
sqrt(diag(esar1f$fdHess))
system.time(esar1M <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data=nydata, listw=listw_NY, family="SAR", method="Matrix"))
summary(esar1M)
system.time(esar1M <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data=nydata, listw=listw_NY, family="SAR", method="Matrix",
control=list(super=TRUE)))
summary(esar1M)
esar1wf <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1wf)
system.time(esar1wM <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data=nydata, listw=listw_NY, weights=POP8, family="SAR", method="Matrix"))
summary(esar1wM)
esar1wlu <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, weights=POP8, family="SAR", method="LU")
summary(esar1wlu)
esar1wch <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, weights=POP8, family="SAR", method="Chebyshev")
summary(esar1wch)
ecar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, family="CAR", method="eigen")
summary(ecar1f)
system.time(ecar1M <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data=nydata, listw=listw_NY, family="CAR", method="Matrix"))
summary(ecar1M)
ecar1wf <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, weights=nydata$POP8, family="CAR", method="eigen")
summary(ecar1wf)
system.time(ecar1wM <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data=nydata, listw=listw_NY, weights=POP8, family="CAR", method="Matrix"))
summary(ecar1wM)
# }
# NOT RUN {
nc.sids <- st_read(system.file("shapes/sids.shp", package="spData")[1], quiet=TRUE)
ft.SID74 <- sqrt(1000)*(sqrt(nc.sids$SID74/nc.sids$BIR74) +
sqrt((nc.sids$SID74+1)/nc.sids$BIR74))
lm_nc <- lm(ft.SID74 ~ 1)
sids.nhbr30 <- dnearneigh(cbind(nc.sids$east, nc.sids$north), 0, 30, row.names=row.names(nc.sids))
sids.nhbr30.dist <- nbdists(sids.nhbr30, cbind(nc.sids$east, nc.sids$north))
sids.nhbr <- listw2sn(nb2listw(sids.nhbr30, glist=sids.nhbr30.dist, style="B", zero.policy=TRUE))
dij <- sids.nhbr[,3]
n <- nc.sids$BIR74
el1 <- min(dij)/dij
el2 <- sqrt(n[sids.nhbr$to]/n[sids.nhbr$from])
sids.nhbr$weights <- el1*el2
sids.nhbr.listw <- sn2listw(sids.nhbr)
both <- factor(paste(nc.sids$L_id, nc.sids$M_id, sep=":"))
ft.NWBIR74 <- sqrt(1000)*(sqrt(nc.sids$NWBIR74/nc.sids$BIR74) +
sqrt((nc.sids$NWBIR74+1)/nc.sids$BIR74))
mdata <- data.frame(both, ft.NWBIR74, ft.SID74, BIR74=nc.sids$BIR74)
outl <- which.max(rstandard(lm_nc))
as.character(nc.sids$NAME[outl])
mdata.4 <- mdata[-outl,]
W <- listw2mat(sids.nhbr.listw)
W.4 <- W[-outl, -outl]
sids.nhbr.listw.4 <- mat2listw(W.4)
esarI <- errorsarlm(ft.SID74 ~ 1, data=mdata, listw=sids.nhbr.listw,
zero.policy=TRUE)
summary(esarI)
esarIa <- spautolm(ft.SID74 ~ 1, data=mdata, listw=sids.nhbr.listw,
family="SAR")
summary(esarIa)
esarIV <- errorsarlm(ft.SID74 ~ ft.NWBIR74, data=mdata, listw=sids.nhbr.listw,
zero.policy=TRUE)
summary(esarIV)
esarIVa <- spautolm(ft.SID74 ~ ft.NWBIR74, data=mdata, listw=sids.nhbr.listw,
family="SAR")
summary(esarIVa)
esarIaw <- spautolm(ft.SID74 ~ 1, data=mdata, listw=sids.nhbr.listw,
weights=BIR74, family="SAR")
summary(esarIaw)
esarIIaw <- spautolm(ft.SID74 ~ both - 1, data=mdata, listw=sids.nhbr.listw,
weights=BIR74, family="SAR")
summary(esarIIaw)
esarIVaw <- spautolm(ft.SID74 ~ ft.NWBIR74, data=mdata,
listw=sids.nhbr.listw, weights=BIR74, family="SAR")
summary(esarIVaw)
ecarIaw <- spautolm(ft.SID74 ~ 1, data=mdata.4, listw=sids.nhbr.listw.4,
weights=BIR74, family="CAR")
summary(ecarIaw)
ecarIIaw <- spautolm(ft.SID74 ~ both - 1, data=mdata.4,
listw=sids.nhbr.listw.4, weights=BIR74, family="CAR")
summary(ecarIIaw)
ecarIVaw <- spautolm(ft.SID74 ~ ft.NWBIR74, data=mdata.4,
listw=sids.nhbr.listw.4, weights=BIR74, family="CAR")
summary(ecarIVaw)
nc.sids$fitIV <- append(fitted.values(ecarIVaw), NA, outl-1)
plot(nc.sids[,"fitIV"], nbreaks=12) # Cressie 1993, p. 565
# }
# NOT RUN {
data(oldcol)
COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
nb2listw(COL.nb, style="W"))
summary(COL.errW.eig)
COL.errW.sar <- spautolm(CRIME ~ INC + HOVAL, data=COL.OLD,
nb2listw(COL.nb, style="W"))
summary(COL.errW.sar)
data(boston, package="spData")
gp1 <- spautolm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2)
+ I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data=boston.c, nb2listw(boston.soi), family="SMA")
summary(gp1)
# }
Run the code above in your browser using DataLab