multispati from the ade4 package.
spca performs the spatial component analysis. Other
functions are:
- print.spca: prints the spca content
- summary.spca: gives variance and autocorrelation
statistics
- plot.spca: usefull graphics (connection network, 3 different
representations of map of scores, eigenvalues barplot and
decomposition)
- screeplot.spca: decomposes spca eigenvalues into variance and
autocorrelation
- colorplot.spca: represents principal components of sPCA in
space using the RGB system.
A tutorial describes how to perform a sPCA: see
adegenetTutorial(which="spca").spca(obj, xy=NULL, cn=NULL, matWeight=NULL,
scale=FALSE, scannf=TRUE, nfposi=1, nfnega=1,
type=NULL, ask=TRUE, plot.nb=TRUE, edit.nb=FALSE,
truenames=TRUE, d1=NULL, d2=NULL, k=NULL, a=NULL, dmin=NULL)## S3 method for class 'spca':
print(x, \dots)
## S3 method for class 'spca':
summary(object, \dots, printres=TRUE)
## S3 method for class 'spca':
plot(x, axis = 1, useLag=FALSE, \dots)
## S3 method for class 'spca':
screeplot(x, \dots, main=NULL)
## S3 method for class 'spca':
colorplot(x, axes=1:ncol(x$li), useLag=FALSE, ...)
genind or genpop object.nb object is provided in
cn.
Longitude/latitude coordinates should be cocn (see details).chooseCN help page). If provided, ask is set to FALSE.type=5.type=5.type=6.type=7.type=7.spca object.spca object.x$ls) should be used instead of the components (x$li).spca are given to lists with the following
components:listw.summary.spca returns a list with 3 components: Istat
giving the null, minimum and maximum Moran's I values; pca
gives variance and I statistics for the principal component analysis;
spca gives variance and I statistics for the sPCA.
- plot.spca returns the matched call.
- screeplot.spca returns the matched call.xy, cn, and matWeight are set.
When several acceptable ways are used at the same time, priority is as
follows:
matWeight > cn > xyWartenberg, D. E. (1985) Multivariate spatial correlation: a method for exploratory geographical analysis. Geographical Analysis, 17, 263--283.
Moran, P.A.P. (1948) The interpretation of statistical maps. Journal of the Royal Statistical Society, B 10, 243--251.
Moran, P.A.P. (1950) Notes on continuous stochastic phenomena. Biometrika, 37, 17--23.
de Jong, P. and Sprenger, C. and van Veen, F. (1984) On extreme values of Moran's I and Geary's c. Geographical Analysis, 16, 17--24.
spcaIllus and rupica for datasets illustrating the sPCA
global.rtest and local.rtest
chooseCN, multispati,
multispati.randtest
convUL, from the package 'PBSmapping' to convert longitude/latitude to
UTM coordinates.## data(spcaIllus) illustrates the sPCA
## see ?spcaIllus
##
example(spcaIllus)
example(rupica)Run the code above in your browser using DataLab