# NOT RUN {
# first generate some sample data
x <- expand.grid(1:20, 1:5)[, 1]
y <- expand.grid(1:20, 1:5)[, 2]
# z data from an exponential random field
z <- cbind(
rmvn.spa(x = x, y = y, p = 2, method = "exp"),
rmvn.spa(x = x, y = y, p = 2, method = "exp")
)
# w data from a gaussian random field
w <- cbind(
rmvn.spa(x = x, y = y, p = 2, method = "gaus"),
rmvn.spa(x = x, y = y, p = 2, method = "gaus")
)
# univariate spline correlogram
fit1 <- spline.correlog(x = x, y = y, z = z[, 1], resamp = 100)
# }
# NOT RUN {
plot.spline.correlog(fit1)
# }
# NOT RUN {
summary(fit1)
# multivariate spline correlogram
fit2 <- spline.correlog(x = x, y = y, z = z, resamp = 100)
# }
# NOT RUN {
plot.spline.correlog(fit2)
# }
# NOT RUN {
summary(fit2)
# multivariate spline cross-correlogram
fit3 <- spline.correlog(x = x, y = y, z = z, w = w, resamp = 100)
# }
# NOT RUN {
plot.spline.correlog(fit3)
# }
# NOT RUN {
summary(fit3)
# }
Run the code above in your browser using DataLab