
Split method for data.table. Faster and more flexible. Be aware that processing list of data.tables will be generally much slower than manipulation in single data.table by group using by
argument, read more on data.table
.
# S3 method for data.table
split(x, f, drop = FALSE,
by, sorted = FALSE, keep.by = TRUE, flatten = TRUE,
..., verbose = getOption("datatable.verbose"))
List of data.table
s. If using flatten
FALSE and length(by) > 1L
then recursively nested lists having data.table
s as leafs of grouping according to by
argument.
data.table
Same as split.data.frame
. Use by
argument instead, this is just for consistency with data.frame method.
logical. Default FALSE
will not drop empty list elements caused by factor levels not referred by that factors. Works also with new arguments of split data.table method.
character vector. Column names on which split should be made. For length(by) > 1L
and flatten
FALSE it will result nested lists with data.tables on leafs.
When default FALSE
it will retain the order of groups we are splitting on. When TRUE
then sorted list(s) are returned. Does not have effect for f
argument.
logical default TRUE
. Keep column provided to by
argument.
logical default TRUE
will unlist nested lists of data.tables. When using f
results are always flattened to list of data.tables.
When using f
, passed to split.data.frame
. When using by
, sep
is recognized as with the default method.
logical default FALSE
. When TRUE
it will print to console data.table split query used to split data.
Argument f
is just for consistency in usage to data.frame method. Recommended is to use by
argument instead, it will be faster, more flexible, and by default will preserve order according to order in data.
data.table
, rbindlist
set.seed(123)
DT = data.table(x1 = rep(letters[1:2], 6),
x2 = rep(letters[3:5], 4),
x3 = rep(letters[5:8], 3),
y = rnorm(12))
DT = DT[sample(.N)]
DF = as.data.frame(DT)
# split consistency with data.frame: `x, f, drop`
all.equal(
split(DT, list(DT$x1, DT$x2)),
lapply(split(DF, list(DF$x1, DF$x2)), setDT)
)
# nested list using `flatten` arguments
split(DT, by=c("x1", "x2"))
split(DT, by=c("x1", "x2"), flatten=FALSE)
# dealing with factors
fdt = DT[, c(lapply(.SD, as.factor), list(y=y)), .SDcols=x1:x3]
fdf = as.data.frame(fdt)
sdf = split(fdf, list(fdf$x1, fdf$x2))
all.equal(
split(fdt, by=c("x1", "x2"), sorted=TRUE),
lapply(sdf[sort(names(sdf))], setDT)
)
# factors having unused levels, drop FALSE, TRUE
fdt = DT[, .(x1 = as.factor(c(as.character(x1), "c"))[-13L],
x2 = as.factor(c("a", as.character(x2)))[-1L],
x3 = as.factor(c("a", as.character(x3), "z"))[c(-1L,-14L)],
y = y)]
fdf = as.data.frame(fdt)
sdf = split(fdf, list(fdf$x1, fdf$x2))
all.equal(
split(fdt, by=c("x1", "x2"), sorted=TRUE),
lapply(sdf[sort(names(sdf))], setDT)
)
sdf = split(fdf, list(fdf$x1, fdf$x2), drop=TRUE)
all.equal(
split(fdt, by=c("x1", "x2"), sorted=TRUE, drop=TRUE),
lapply(sdf[sort(names(sdf))], setDT)
)
Run the code above in your browser using DataLab