# NOT RUN {
l <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("RACE", split_fun = drop_split_levels) %>%
analyze("AGE", mean, var_labels = "Age", format = "xx.xx")
build_table(l, DM)
basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("RACE") %>%
analyze("AGE", mean, var_labels = "Age", format = "xx.xx") %>%
build_table(DM)
l <- basic_table() %>%
split_cols_by("ARM") %>%
split_cols_by("SEX") %>%
summarize_row_groups(label_fstr = "Overall (N)") %>%
split_rows_by("RACE", split_label = "Ethnicity", labels_var = "ethn_lab",
split_fun = drop_split_levels) %>%
summarize_row_groups("RACE", label_fstr = "%s (n)") %>%
analyze("AGE", var_labels = "Age", afun = mean, format = "xx.xx")
l
library(dplyr)
DM2 <- DM %>%
filter(SEX %in% c("M", "F")) %>%
mutate(
SEX = droplevels(SEX),
gender_lab = c("F" = "Female", "M" = "Male",
"U" = "Unknown", "UNDIFFERENTIATED" = "Undifferentiated")[SEX],
ethn_lab = c(
"ASIAN" = "Asian",
"BLACK OR AFRICAN AMERICAN" = "Black or African American",
"WHITE" = "White",
"AMERICAN INDIAN OR ALASKA NATIVE" = "American Indian or Alaska Native",
"MULTIPLE" = "Multiple",
"NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER" =
"Native Hawaiian or Other Pacific Islander",
"OTHER" = "Other", "UNKNOWN" = "Unknown"
)[RACE]
)
build_table(l, DM2)
# }
Run the code above in your browser using DataLab