Last chance! 50% off unlimited learning
Sale ends in
splithalfCP(X, n, m, p, r, centopt, normopt, scaleopt, addanal, conv, maxit, ort1, ort2, ort3, laba, labb, labc)
n
x
mp
) containing the matricized array (frontal slices)A
-mode entitiesB
-mode entitiesC
-mode entitiescent3
)norm3
)renormsolCP
)A
(see CP
)B
(see CP
)C
(see CP
)n
containing the labels of the A
-mode entitiesm
containing the labels of the B
-mode entitiesp
containing the labels of the C
-mode entitiesA
-mode (full data)A
-mode (split n.1)A
-mode (split n.2)B
-mode (full data)B
-mode (split n.1)B
-mode (split n.2)C
-mode (full data)C
-mode (split n.1)C
-mode (split n.2)CP
data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
# permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
## Not run:
# # Split-half analysis on CP solution
# splitCP <- splithalfCP(TVdata, 30, 16, 15, 2, 0, 0, 0, 5, 1e-6, 10000, 1, 1, 1,
# labSTUDENT, labSCALE, labPROGRAM)
# # Split-half analysis on CP solution (when labels are not available)
# splitCP <- splithalfCP(TVdata, 30, 16, 15, 2, 0, 0, 0, 5, 1e-6, 10000, 1, 1, 1)
# ## End(Not run)
Run the code above in your browser using DataLab