# NOT RUN {
example("read_stan_csv")
stan_plot(fit)
stan_trace(fit)
library(gridExtra)
fit <- stan_demo("eight_schools")
stan_plot(fit)
stan_plot(fit, point_est = "mean", show_density = TRUE, fill_color = "maroon")
# histograms
stan_hist(fit)
# suppress ggplot2 messages about default bindwidth
quietgg(stan_hist(fit))
quietgg(h <- stan_hist(fit, pars = "theta", binwidth = 5))
# juxtapose histograms of tau and unconstrained tau
tau <- stan_hist(fit, pars = "tau")
tau_unc <- stan_hist(fit, pars = "tau", unconstrain = TRUE) +
xlab("tau unconstrained")
grid.arrange(tau, tau_unc)
# kernel density estimates
stan_dens(fit)
(dens <- stan_dens(fit, fill = "skyblue", ))
dens <- dens + ggtitle("Kernel Density Estimates\n") + xlab("")
dens
(dens_sep <- stan_dens(fit, separate_chains = TRUE, alpha = 0.3))
dens_sep + scale_fill_manual(values = c("red", "blue", "green", "black"))
(dens_sep_stack <- stan_dens(fit, pars = "theta", alpha = 0.5,
separate_chains = TRUE, position = "stack"))
# traceplot
trace <- stan_trace(fit)
trace +
scale_color_manual(values = c("red", "blue", "green", "black"))
trace +
scale_color_brewer(type = "div") +
theme(legend.position = "none")
facet_style <- theme(strip.background = element_rect(fill = "white"),
strip.text = element_text(size = 13, color = "black"))
(trace <- trace + facet_style)
# scatterplot
(mu_vs_tau <- stan_scat(fit, pars = c("mu", "tau"), color = "blue", size = 4))
mu_vs_tau +
coord_flip() +
theme(panel.background = element_rect(fill = "black"))
# }
Run the code above in your browser using DataLab