Learn R Programming

⚠️There's a newer version (0.4.6) of this package.Take me there.

EFAtools

The EFAtools package provides functions to perform exploratory factor analysis (EFA) procedures and compare their solutions. The goal is to provide state-of-the-art factor retention methods and a high degree of flexibility in the EFA procedures. This way, implementations from R psych and SPSS can be compared. Moreover, functions for Schmid-Leiman transformation, and computation of omegas are provided. To speed up the analyses, some of the iterative procedures like principal axis factoring (PAF) are implemented in C++.

Installation

You can install the release version from CRAN with:

install.packages("EFAtools")

You can install the development version from GitHub with:

install.packages("devtools")
devtools::install_github("mdsteiner/EFAtools")

To also build the vignette when installing the development version, use:

install.packages("devtools")
devtools::install_github("mdsteiner/EFAtools", build_vignettes = TRUE)

Example

Here are a few examples on how to perform the analyses with the different types and how to compare the results using the COMPARE function. For more details, see the vignette by running vignette("EFAtools", package = "EFAtools"). The vignette provides a high-level introduction into the functionalities of the package.

# load the package
library(EFAtools)

# Run all possible factor retention methods
N_FACTORS(test_models$baseline$cormat, N = 500, method = "ML")
#> Warning in N_FACTORS(test_models$baseline$cormat, N = 500, method = "ML"): ! 'x' was a correlation matrix but CD needs raw data. Skipping CD.
#>                                                                                                                                                                  ◉ 

Copy Link

Version

Install

install.packages('EFAtools')

Monthly Downloads

1,938

Version

0.4.5

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Markus Steiner

Last Published

March 21st, 2025

Functions in EFAtools (0.4.5)

OMEGA

McDonald's omega
IDS2_R

Intelligence subtests from the Intelligence and Development Scales--2
KMO

Kaiser-Meyer-Olkin criterion
.numformat

Format numbers for print method
SPSS_23

Various outputs from SPSS (version 23) FACTOR
SPSS_27

Various outputs from SPSS (version 27) FACTOR
UPPS_raw

UPPS_raw
WJIV_ages_14_19

Woodcock Johnson IV: ages 14 to 19
.factor_corres

Compute number of non-matching indicator-to-factor correspondences
N_FACTORS

Various Factor Retention Criteria
.paf_iter

Perform the iterative PAF procedure
KGC

Kaiser-Guttman Criterion
WJIV_ages_20_39

Woodcock Johnson IV: ages 20 to 39
.parallel_sim

Parallel analysis on simulated data.
print.N_FACTORS

Print function for N_FACTORS objects
print.LOADINGS

Print LOADINGS object
WJIV_ages_3_5

Woodcock Johnson IV: ages 3 to 5
HULL

Hull method for determining the number of factors to retain
GRiPS_raw

GRiPS_raw
PARALLEL

Parallel analysis
plot.EFA_AVERAGE

Plot EFA_AVERAGE object
print.SLLOADINGS

Print SLLOADINGS object
print.SMT

Print SMT object
plot.EKC

Plot EKC object
SL

Schmid-Leiman Transformation
SMT

Sequential Chi Square Model Tests, RMSEA lower bound, and AIC
plot.PARALLEL

Plot PARALLEL object
print.EFA

Print EFA object
WJIV_ages_40_90

Woodcock Johnson IV: ages 40 to 90 plus
print.OMEGA

Print OMEGA object
print.PARALLEL

Print function for PARALLEL objects
print.EFA_AVERAGE

Print EFA_AVERAGE object
test_models

Four test models used in Grieder and Steiner (2020)
plot.HULL

Plot HULL object
WJIV_ages_6_8

Woodcock Johnson IV: ages 6 to 8
print.KMO

Print KMO object
print.KGC

Print function for KGC objects
WJIV_ages_9_13

Woodcock Johnson IV: ages 9 to 13
.compute_vars

Compute explained variances from loadings
%>%

Pipe operator
plot.SCREE

Plot SCREE object
plot.KGC

Plot KGC object
print.CD

Print function for CD objects
print.EKC

Print function for EKC objects
plot.CD

Plot CD object
print.HULL

Print function for HULL objects
population_models

population_models
print.BARTLETT

Print BARTLETT object
print.COMPARE

Print COMPARE object
print.SL

Print SL object
print.SCREE

Print function for SCREE objects
EFA_AVERAGE

Model averaging across different EFA methods and types
EKC

Empirical Kaiser Criterion
EFAtools-package

EFAtools: Fast and Flexible Implementations of Exploratory Factor Analysis Tools
EFA

Exploratory factor analysis (EFA)
COMPARE

Compare two vectors or matrices (communalities or loadings)
BARTLETT

Bartlett's test of sphericity
CD

Comparison Data
DOSPERT_raw

DOSPERT_raw
DOSPERT

DOSPERT
FACTOR_SCORES

Estimate factor scores for an EFA model
RiskDimensions

RiskDimensions
SCREE

Scree Plot