# NOT RUN {
imp <- mice(boys, maxit=1)
### stripplot, all numerical variables
# }
# NOT RUN {
stripplot(imp)
# }
# NOT RUN {
### same, but with improved display
# }
# NOT RUN {
stripplot(imp, col=c("grey",mdc(2)),pch=c(1,20))
# }
# NOT RUN {
### distribution per imputation of height, weight and bmi
### labeled by their own missingness
# }
# NOT RUN {
stripplot(imp, hgt+wgt+bmi~.imp, cex=c(2,4), pch=c(1,20),jitter=FALSE,
layout=c(3,1))
# }
# NOT RUN {
### same, but labeled with the missingness of wgt (just four cases)
# }
# NOT RUN {
stripplot(imp, hgt+wgt+bmi~.imp, na=wgt, cex=c(2,4), pch=c(1,20),jitter=FALSE,
layout=c(3,1))
# }
# NOT RUN {
### distribution of age and height, labeled by missingness in height
### most height values are missing for those around
### the age of two years
### some additional missings occur in region WEST
# }
# NOT RUN {
stripplot(imp, age+hgt~.imp|reg, hgt, col=c(hcl(0,0,40,0.2), mdc(2)),pch=c(1,20))
# }
# NOT RUN {
### heavily jitted relation between two categorical variables
### labeled by missingness of gen
### aggregated over all imputed data sets
# }
# NOT RUN {
stripplot(imp, gen~phb, factor=2, cex=c(8,1), hor=TRUE)
# }
# NOT RUN {
### circle fun
stripplot(imp, gen~.imp, na = wgt, factor = 2, cex = c(8.6),
hor = FALSE, outer = TRUE, scales = "free", pch = c(1,19))
# }
Run the code above in your browser using DataLab