# NOT RUN {
library(mlbench)
data(BostonHousing)
## 1 committee and no instance-based correction, so just an M5 fit:
mod1 <- cubist(x = BostonHousing[, -14], y = BostonHousing$medv)
summary(mod1)
## example output:
## Cubist [Release 2.07 GPL Edition] Sun Apr 10 17:36:56 2011
## ---------------------------------
##
## Target attribute `outcome'
##
## Read 506 cases (14 attributes) from undefined.data
##
## Model:
##
## Rule 1: [101 cases, mean 13.84, range 5 to 27.5, est err 1.98]
##
## if
## nox > 0.668
## then
## outcome = -1.11 + 2.93 dis + 21.4 nox - 0.33 lstat + 0.008 b
## - 0.13 ptratio - 0.02 crim - 0.003 age + 0.1 rm
##
## Rule 2: [203 cases, mean 19.42, range 7 to 31, est err 2.10]
##
## if
## nox <= 0.668
## lstat > 9.59
## then
## outcome = 23.57 + 3.1 rm - 0.81 dis - 0.71 ptratio - 0.048 age
## - 0.15 lstat + 0.01 b - 0.0041 tax - 5.2 nox + 0.05 crim
## + 0.02 rad
##
## Rule 3: [43 cases, mean 24.00, range 11.9 to 50, est err 2.56]
##
## if
## rm <= 6.226
## lstat <= 9.59
## then
## outcome = 1.18 + 3.83 crim + 4.3 rm - 0.06 age - 0.11 lstat - 0.003 tax
## - 0.09 dis - 0.08 ptratio
##
## Rule 4: [163 cases, mean 31.46, range 16.5 to 50, est err 2.78]
##
## if
## rm > 6.226
## lstat <= 9.59
## then
## outcome = -4.71 + 2.22 crim + 9.2 rm - 0.83 lstat - 0.0182 tax
## - 0.72 ptratio - 0.71 dis - 0.04 age + 0.03 rad - 1.7 nox
## + 0.008 zn
##
##
## Evaluation on training data (506 cases):
##
## Average |error| 2.07
## Relative |error| 0.31
## Correlation coefficient 0.94
##
##
## Attribute usage:
## Conds Model
##
## 80% 100% lstat
## 60% 92% nox
## 40% 100% rm
## 100% crim
## 100% age
## 100% dis
## 100% ptratio
## 80% tax
## 72% rad
## 60% b
## 32% zn
##
##
## Time: 0.0 secs
# }
Run the code above in your browser using DataLab