meta
.## S3 method for class 'meta':
print(x, sortvar, level=x$level, level.comb=x$level.comb,
comb.fixed=x$comb.fixed, comb.random=x$comb.random,
details=FALSE, ma=TRUE, digits=max(4, .Options$digits - 3), ...)## S3 method for class 'metabias':
print(x, ...)
## S3 method for class 'meta':
summary(object, byvar=object$byvar,
bylab=object$bylab, print.byvar=object$print.byvar,
bystud=FALSE,
level=object$level, level.comb=object$level.comb,
comb.fixed=object$comb.fixed, comb.random=object$comb.random,
print.CMH=object$print.CMH, warn=object$warn, ...)
## S3 method for class 'summary.meta':
print(x, digits = max(3, .Options$digits - 3),
print.byvar=x$print.byvar,
comb.fixed=x$comb.fixed, comb.random=x$comb.random,
header=TRUE, print.CMH=x$print.CMH, bylab.nchar=35, ...)
meta
, metabias
, or
summary.meta
.meta
.x$TE
).x$TE
).print.default
.print.byvar
is set to TRUE
.summary.meta
in connection with metacum
or
metainf
should result in a warning.summary.meta
with the
following elements:byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not
missing.byvar
is not
missing.read.rm5
. If a meta-analysis is then
conducted using function metacr
, information on subgroups is
available in R (components byvar
, bylab
, and
print.byvar
, byvar
in an object of class
"meta"
). Accordingly, by using function metacr
there is
no need to define subgroups in order to redo the statistical analysis
conducted in the Cochrane review. For subgroups (argument byvar
not NULL
), results for the
fixed effect model will be printed if both arguments comb.fixed
and comb.random
are TRUE
. In order to get results for
the random effects model within subgroups, use
comb.fixed==FALSE
and comb.random==TRUE
.
Note, for an object of type metaprop
, exact binomial
confidence intervals are calculated for individual study results
using the R function binom.test
internally. Accordingly, list elements TE
, lower
and
upper
in element study
correspond to proportions and
exact confidence limits on the natural scale (irrespective of the
transformation used in meta-analysis). Contrary, meta-analysis
results are transformed as defined by argument sm
, i.e. list
elements TE
, lower
and upper
in elements
fixed
, random
, within.fixed
and
within.random
.
Higgins JPT & Thompson SG (2002), Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539--1558.
metabin
, metacont
, metagen
data(Fleiss93cont)
meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD")
summary(meta1)
summary(meta1, byvar=c(1,2,1,1,2), bylab="group")
Run the code above in your browser using DataLab