## The complete Wilms Tumor Data
## (Breslow and Chatterjee, Applied Statistics, 1999)
## subcohort selected by simple random sampling.
##
subcoh <- nwtco$in.subcohort
selccoh <- with(nwtco, rel==1|subcoh==1)
ccoh.data <- nwtco[selccoh,]
ccoh.data$subcohort <- subcoh[selccoh]
## central-lab histology
ccoh.data$histol <- factor(ccoh.data$histol,labels=c("FH","UH"))
## tumour stage
ccoh.data$stage <- factor(ccoh.data$stage,labels=c("I","II","III","IV"))
ccoh.data$age <- ccoh.data$age/12 # Age in years
##
## Standard case-cohort analysis: simple random subcohort
##
fit.ccP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028)
fit.ccP
fit.ccSP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028, method="SelfPren")
summary(fit.ccSP)
##
## (post-)stratified on instit
##
stratsizes<-table(nwtco$instit)
fit.BI<- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, stratum=~instit, cohort.size=stratsizes,
method="I.Borgan")
summary(fit.BI)
Run the code above in your browser using DataLab