
survreg.distributions
extreme
, gaussian
,
logistic
and t
. The last three
are parametrised in the same way as the distributions already present in
R. The extreme value cdf is
When the logarithm of survival time has one of the first three distributions
we obtain respectively lognormal
,loglogistic
and
weibull
.
The other predefined distributions are defined in terms of these. The
exponential
and rayleigh
distributions are Weibull
distributions with fixed scale
of 1 and 0.5 respectively, and
loggaussian
is a synonym for lognormal
.
Parts of the built-in distributions are hardcoded in C, so the elements
of survreg.distributions
in the first format above must not be
changed and new ones must not be added. The examples show how to
specify user-defined distributions to survreg
.
survreg
,
pnorm
,plogis
, pt
data(ovarian)
## not a good fit, but a useful example
survreg(Surv(futime,fustat)~ecog.ps+rx,data=ovarian,dist='extreme')
##
my.extreme<-survreg.distributions$extreme
my.extreme$name<-"Xtreme"
survreg(Surv(futime,fustat)~ecog.ps+rx,data=ovarian,dist=my.extreme)
## time transformation
survreg(Surv(futime,fustat)~ecog.ps+rx,data=ovarian,dist='weibull',scale=1)
my.weibull<-survreg.distributions$weibull
my.weibull$dist<-my.extreme
survreg(Surv(futime,fustat)~ecog.ps+rx,data=ovarian,dist=my.weibull,scale=1)
## change the transformation to work in years
## intercept changes by log(365), other coefficients stay the same
my.weibull$trans<-function(y) log(y/365)
my.weibull$itrans<-function(y) exp(365*y)
survreg(Surv(futime,fustat)~ecog.ps+rx,data=ovarian,dist=my.weibull,scale=1)
Run the code above in your browser using DataLab