# NOT RUN {
require(stats)
groups <- as.factor(rbinom(32, n = 5, prob = 0.4))
tapply(groups, groups, length) #- is almost the same as
table(groups)
## contingency table from data.frame : array with named dimnames
tapply(warpbreaks$breaks, warpbreaks[,-1], sum)
tapply(warpbreaks$breaks, warpbreaks[, 3, drop = FALSE], sum)
n <- 17; fac <- factor(rep_len(1:3, n), levels = 1:5)
table(fac)
tapply(1:n, fac, sum)
tapply(1:n, fac, sum, default = 0) # maybe more desirable
tapply(1:n, fac, sum, simplify = FALSE)
tapply(1:n, fac, range)
tapply(1:n, fac, quantile)
tapply(1:n, fac, length) ## NA's
tapply(1:n, fac, length, default = 0) # == table(fac)
# }
# NOT RUN {
## example of ... argument: find quarterly means
tapply(presidents, cycle(presidents), mean, na.rm = TRUE)
ind <- list(c(1, 2, 2), c("A", "A", "B"))
table(ind)
tapply(1:3, ind) #-> the split vector
tapply(1:3, ind, sum)
## Some assertions (not held by all patch propsals):
nq <- names(quantile(1:5))
stopifnot(
identical(tapply(1:3, ind), c(1L, 2L, 4L)),
identical(tapply(1:3, ind, sum),
matrix(c(1L, 2L, NA, 3L), 2, dimnames = list(c("1", "2"), c("A", "B")))),
identical(tapply(1:n, fac, quantile)[-1],
array(list(`2` = structure(c(2, 5.75, 9.5, 13.25, 17), .Names = nq),
`3` = structure(c(3, 6, 9, 12, 15), .Names = nq),
`4` = NULL, `5` = NULL), dim=4, dimnames=list(as.character(2:5)))))
# }
Run the code above in your browser using DataLab