# NOT RUN {
dat1 <- data.frame(group = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
x = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA))
#--------------------------------------
# One-Sample Design
# Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
test.z(dat1$x, sigma = 1.2, mu = 3)
# Two-sided one-sample z-test
# population mean = 3, population variance = 1.44
test.z(dat1$x, sigma2 = 1.44, mu = 3)
# One-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
test.z(dat1$x, sigma = 1.2, mu = 3, alternative = "greater")
# Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# convert value 3 to NA
test.z(dat1$x, sigma = 1.2, mu = 3, as.na = 3)
# Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# print Cohen's d
test.z(dat1$x, sigma = 1.2, mu = 3, effsize = TRUE)
# Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# do not print hypotheses and descriptive statistics
test.z(dat1$x, sigma = 1.2, mu = 3, hypo = FALSE, descript = FALSE)
# Two-sided one-sample z-test
# population mean = 3, population standard deviation = 1.2
# print descriptive statistics with 3 digits and p-value with 5 digits
test.z(dat1$x, sigma = 1.2, mu = 3, digits = 3, p.digits = 5)
#--------------------------------------
# Two-Sample Design
# Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
test.z(x ~ group, sigma = 1.2, data = dat1)
# Two-sided two-sample z-test
# population standard deviation (SD) = 1.2 and 1.5, unequal SD assumption
test.z(x ~ group, sigma = c(1.2, 1.5), data = dat1)
# Two-sided two-sample z-test
# population variance (Var) = 1.44 and 2.25, unequal Var assumption
test.z(x ~ group, sigma2 = c(1.44, 2.25), data = dat1)
# One-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
test.z(x ~ group, sigma = 1.2, data = dat1, alternative = "greater")
# Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
# print Cohen's d
test.z(x ~ group, sigma = 1.2, data = dat1, effsize = TRUE)
# Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
# do not print hypotheses and descriptive statistics,
# print Cohen's d
test.z(x ~ group, sigma = 1.2, data = dat1, descript = FALSE, hypo = FALSE)
# Two-sided two-sample z-test
# population mean = 3, population standard deviation = 1.2
# print descriptive statistics with 3 digits and p-value with 5 digits
test.z(x ~ group, sigma = 1.2, data = dat1, digits = 3, p.digits = 5)
#-----------------
group1 <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)
# Two-sided two-sample z-test
# population standard deviation (SD) = 1.2, equal SD assumption
test.z(group1, group2, sigma = 1.2)
#--------------------------------------
# Paired-Sample Design
dat2 <- data.frame(pre = c(1, 3, 2, 5, 7),
post = c(2, 2, 1, 6, 8), stringsAsFactors = FALSE)
# Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE)
# Two-sided paired-sample z-test
# population variance of difference score = 1.44
test.z(dat2$pre, dat2$post, sigma2 = 1.44, paired = TRUE)
# One-sided paired-sample z-test
# population standard deviation of difference score = 1.2
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,
alternative = "greater")
# Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# convert value 1 to NA
test.z(dat2$pre, dat2$post, sigma = 1.2, as.na = 1, paired = TRUE)
# Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# print Cohen's d
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE, effsize = TRUE)
# Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# do not print hypotheses and descriptive statistics
test.z(dat2$pre, dat2$post, sigma = 1.2, mu = 3, paired = TRUE,
hypo = FALSE, descript = FALSE)
# Two-sided paired-sample z-test
# population standard deviation of difference score = 1.2
# print descriptive statistics with 3 digits and p-value with 5 digits
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,
digits = 3, p.digits = 5)
# }
Run the code above in your browser using DataLab