#simulate a dataset with continuous data
dataset <- matrix(runif(1000 * 200, 1, 1000), nrow = 1000 )
#the target feature is the last column of the dataset as a vector
target <- dataset[, 200]
res1 <- testIndFisher(target, dataset, xIndex = 44, csIndex = 100)
res2 <- testIndSpearman(target, dataset, xIndex = 44, csIndex = 100)
#require(gRbase) #for faster computations in the internal functions
#define class variable (here tha last column of the dataset)
target <- 200;
#run the SES algorithm using the testIndFisher conditional independence test
sesObject <- SES(target, dataset, max_k = 3, threshold = 0.05, test = "testIndFisher");
#print summary of the SES output
summary(sesObject);
#plot the SES output
plot(sesObject, mode = "all");
Run the code above in your browser using DataLab