A tool to visually estimate the temporal correlation parameter theta; note that sigma and phi must have first been estiamted.
thetaEst(
xyt,
spatial.intensity = NULL,
temporal.intensity = NULL,
sigma,
phi,
theta.range = c(0, 10),
N = 100,
spatial.covmodel = "exponential",
covpars = c()
)
object of class stppp
A spatial at risk object OR a bivariate density estimate of lambda, an object of class im (produced from density.ppp for example),
either an object of class temporalAtRisk, or one that can be coerced into that form. If NULL (default), this is estimated from the data, seee ?muEst
estimate of parameter sigma
estimate of parameter phi
range of theta values to consider
number of integration points in computation of C(v,beta) (see Brix and Diggle 2003, corrigendum to Brix and Diggle 2001)
spatial covariance model
additional covariance parameters
An r panel tool for visual estimation of temporal parameter theta NOTE if lambdaEst has been invoked to estimate lambda, then the returned density should be passed to thetaEst as the argument spatial.intensity
Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/
Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.
Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.
ginhomAverage, KinhomAverage, spatialparsEst, lambdaEst, muEst