Learn R Programming

broom (version 0.7.5)

tidy.emmGrid: Tidy a(n) emmGrid object

Description

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for emmGrid
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)

Arguments

x

An emmGrid object.

conf.int

Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE.

conf.level

The confidence level to use for the confidence interval if conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.

...

Additional arguments passed to emmeans::summary.emmGrid() or lsmeans::summary.ref.grid(). Cautionary note: misspecified arguments may be silently ignored!

Value

A tibble::tibble() with columns:

conf.high

Upper bound on the confidence interval for the estimate.

conf.low

Lower bound on the confidence interval for the estimate.

df

Degrees of freedom used by this term in the model.

p.value

The two-sided p-value associated with the observed statistic.

std.error

The standard error of the regression term.

estimate

Expected marginal mean

statistic

T-ratio statistic

Details

Returns a data frame with one observation for each estimated marginal mean, and one column for each combination of factors. When the input is a contrast, each row will contain one estimated contrast.

There are a large number of arguments that can be passed on to emmeans::summary.emmGrid() or lsmeans::summary.ref.grid().

See Also

tidy(), emmeans::ref_grid(), emmeans::emmeans(), emmeans::contrast()

Other emmeans tidiers: tidy.lsmobj(), tidy.ref.grid(), tidy.summary_emm()

Examples

Run this code
# NOT RUN {
library(emmeans)
# linear model for sales of oranges per day
oranges_lm1 <- lm(sales1 ~ price1 + price2 + day + store, data = oranges)

# reference grid; see vignette("basics", package = "emmeans")
oranges_rg1 <- ref_grid(oranges_lm1)
td <- tidy(oranges_rg1)
td

# marginal averages
marginal <- emmeans(oranges_rg1, "day")
tidy(marginal)

# contrasts
tidy(contrast(marginal))
tidy(contrast(marginal, method = "pairwise"))

# plot confidence intervals
library(ggplot2)
ggplot(tidy(marginal, conf.int = TRUE), aes(day, estimate)) +
  geom_point() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high))

# by multiple prices
by_price <- emmeans(oranges_lm1, "day",
  by = "price2",
  at = list(
    price1 = 50, price2 = c(40, 60, 80),
    day = c("2", "3", "4")
  )
)
by_price
tidy(by_price)

ggplot(tidy(by_price, conf.int = TRUE), aes(price2, estimate, color = day)) +
  geom_line() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high))

# joint_tests
tidy(joint_tests(oranges_lm1))
# }

Run the code above in your browser using DataLab