# NOT RUN {
if (require("poLCA", quietly = TRUE)) {
library(poLCA)
library(dplyr)
data(values)
f <- cbind(A, B, C, D)~1
M1 <- poLCA(f, values, nclass = 2, verbose = FALSE)
M1
tidy(M1)
augment(M1)
glance(M1)
library(ggplot2)
ggplot(tidy(M1), aes(factor(class), estimate, fill = factor(outcome))) +
geom_bar(stat = "identity", width = 1) +
facet_wrap(~ variable)
set.seed(2016)
# compare multiple
mods <- tibble(nclass = 1:3) %>%
group_by(nclass) %>%
do(mod = poLCA(f, values, nclass = .$nclass, verbose = FALSE))
# compare log-likelihood and/or AIC, BIC
mods %>%
glance(mod)
## Three-class model with a single covariate.
data(election)
f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG,
MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY
nes2a <- poLCA(f2a, election, nclass = 3, nrep = 5, verbose = FALSE)
td <- tidy(nes2a)
td
# show
ggplot(td, aes(outcome, estimate, color = factor(class), group = class)) +
geom_line() +
facet_wrap(~ variable, nrow = 2) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
au <- augment(nes2a)
au
au %>%
count(.class)
# if the original data is provided, it leads to NAs in new columns
# for rows that weren't predicted
au2 <- augment(nes2a, data = election)
au2
dim(au2)
}
# }
Run the code above in your browser using DataLab