Learn R Programming

timetk (version 2.6.1)

tk_augment_differences: Add many differenced columns to the data

Description

A handy function for adding multiple lagged difference values to a data frame. Works with dplyr groups too.

Usage

tk_augment_differences(
  .data,
  .value,
  .lags = 1,
  .differences = 1,
  .log = FALSE,
  .names = "auto"
)

Arguments

.data

A tibble.

.value

One or more column(s) to have a transformation applied. Usage of tidyselect functions (e.g. contains()) can be used to select multiple columns.

.lags

One or more lags for the difference(s)

.differences

The number of differences to apply.

.log

If TRUE, applies log-differences.

.names

A vector of names for the new columns. Must be of same length as the number of output columns. Use "auto" to automatically rename the columns.

Value

Returns a tibble object describing the timeseries.

Details

Benefits

This is a scalable function that is:

  • Designed to work with grouped data using dplyr::group_by()

  • Add multiple differences by adding a sequence of differences using the .lags argument (e.g. lags = 1:20)

See Also

Augment Operations:

Underlying Function:

  • diff_vec() - Underlying function that powers tk_augment_differences()

Examples

Run this code
# NOT RUN {
library(tidyverse)
library(timetk)

m4_monthly %>%
    group_by(id) %>%
    tk_augment_differences(value, .lags = 1:20)

# }

Run the code above in your browser using DataLab