Last chance! 50% off unlimited learning
Sale ends in
tpptrCurveFit(data, dataCI = NULL, resultPath = NULL, ggplotTheme = tppDefaultTheme(), doPlot = TRUE, startPars = c(Pl = 0, a = 550, b = 10), maxAttempts = 500, nCores = "max", verbose = FALSE)
ExpressionSet
s with protein fold changes for curve
fitting.ExpressionSet
s with protein fold change confidence
intervals for curve fitting. Default to NULL.nls
for curve fitting.S
, the fold changes can be
accessed by exprs(S)
. Protein expNames can be accessed by
featureNames(S)
. Isobaric labels and the corresponding temperatures are
returned by S$label
and S$temperature
.
maxAttempts
)The melting curve plots will be stored in a subfolder with name
Melting_Curves
at the location specified by resultPath
.
tppDefaultTheme
data(hdacTR_smallExample)
tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data)
tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs())
normalizedData <- tpptrNorm$normData
hdacSubsets <- lapply(normalizedData,
function(d) d[grepl("HDAC", featureNames(d))])
tpptrFittedHDACs <- tpptrCurveFit(hdacSubsets, nCores=1)
# Show estimated parameters for vehicle and treatment experiments:
pData(featureData(tpptrFittedHDACs[["Vehicle_1"]]))
pData(featureData(tpptrFittedHDACs[["Panobinostat_1"]]))
Run the code above in your browser using DataLab