pop <- gafs_initial(vars = 10, popSize = 10)
pop
gafs_lrSelection(population = pop, fitness = 1:10)
gafs_spCrossover(population = pop, fitness = 1:10, parents = 1:2)
## Not run:
# ## Hypothetical examples
# lda_ga <- gafs(x = predictors,
# y = classes,
# gafsControl = gafsControl(functions = caretGA),
# ## now pass arguments to `train`
# method = "lda",
# metric = "Accuracy"
# trControl = trainControl(method = "cv", classProbs = TRUE))
#
# rf_ga <- gafs(x = predictors,
# y = classes,
# gafsControl = gafsControl(functions = rfGA),
# ## these are arguments to `randomForest`
# ntree = 1000,
# importance = TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab