The Tucker decomposition of a tensor. Approximates a K-Tensor using a n-mode product of a core tensor (with modes specified by ranks) with orthogonal factor matrices. If there is no truncation in one of the modes, then this is the same as the MPCA, mpca. If there is no truncation in all the modes (i.e. ranks = tnsr@modes), then this is the same as the HOSVD, hosvd. This is an iterative algorithm, with two possible stopping conditions: either relative error in Frobenius norm has gotten below tol, or the max_iter number of iterations has been reached. For more details on the Tucker decomposition, consult Kolda and Bader (2009).
Usage
tucker(tnsr, ranks = NULL, max_iter = 25, tol = 1e-05)
Arguments
tnsr
Tensor with K modes
ranks
a vector of the modes of the output core Tensor
max_iter
maximum number of iterations if error stays above tol
tol
relative Frobenius norm error tolerance
Value
a list containing the following:
Z
the core tensor, with modes specified by ranks
U
a list of orthgonal factor matrices - one for each mode, with the number of columns of the matrices given by ranks
conv
whether or not resid < tol by the last iteration
est
estimate of tnsr after compression
norm_percent
the percent of Frobenius norm explained by the approximation
fnorm_resid
the Frobenius norm of the error fnorm(est-tnsr)
all_resids
vector containing the Frobenius norm of error for all the iterations
Details
Uses the Alternating Least Squares (ALS) estimation procedure also known as Higher-Order Orthogonal Iteration (HOOI). Intialized using a (Truncated-)HOSVD. A progress bar is included to help monitor operations on large tensors.
References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and Applications 2009.