Learn R Programming

e1071 (version 1.3-10)

tune.rpart: Convenience tuning functions

Description

Convenience tuning functions, using tune.

Usage

tune.svm(x, y = NULL, degree = NULL, gamma = NULL, coef0 = NULL, cost = NULL, 
         nu = NULL, ...)
best.svm(x, ...)
 
tune.nnet(x, y = NULL, size = NULL, decay = NULL, nrepeat = 5, trace = FALSE, 
          predict.func = function(...) predict(..., type = "class"), ...)
best.nnet(x, ...)

tune.rpart(formula, data, na.action = na.omit, minsplit = NULL, minbucket = NULL, cp = NULL, maxcompete = NULL, maxsurrogate = NULL, usesurrogate = NULL, xval = NULL, surrogatestyle = NULL, maxdepth = NULL, predict.func = NULL, ...) best.rpart(formula, ...) rpart.wrapper(formula, minsplit=20, minbucket=round(minsplit/3), cp=0.01, maxcompete=4, maxsurrogate=5, usesurrogate=2, xval=10, surrogatestyle=0, maxdepth=30, ...)

tune.randomForest(x, y = NULL, nodesize = NULL, mtry = NULL, ntree = NULL, ...) best.randomForest(x, ...)

tune.knn(x, y, k = NULL, l = NULL, ...) knn.wrapper(x, y, k = 1, l = 0, ...)

Arguments

formula, x, y, data
formula and data arguments of function to be tuned.
predict.func
predicting function.
na.action
function handling missingness.
minsplit, minbucket, cp, maxcompete, maxsurrogate, usesurrogate, xval, surrogatestyle, maxdepth
rpart parameters.
degree, gamma, coef0, cost, nu
svm parameters.
k, l
knn parameters.
mtry, nodesize, ntree
randomForest parameters.
size, decay, nrepeat, trace
nnet parameters.
...
Further parameters passed to tune.

Value

  • tune.foo returns a tuning object including the best parameter set obtained by optimizing over the specified parameter vectors. best.foo directly returns the best model, i.e. the fit of a new model using the optimal parameters found by tune.foo.

See Also

tune