tune.svm(x, y = NULL, data = NULL, degree = NULL, gamma = NULL, coef0 = NULL, cost = NULL, nu = NULL, class.weights = NULL, epsilon = NULL, ...)
best.svm(x, tunecontrol = tune.control(), ...)
tune.nnet(x, y = NULL, data = NULL, size = NULL, decay = NULL, trace = FALSE, tunecontrol = tune.control(nrepeat = 5), ...)
best.nnet(x, tunecontrol = tune.control(nrepeat = 5), ...)
tune.rpart(formula, data, na.action = na.omit, minsplit = NULL, minbucket = NULL, cp = NULL, maxcompete = NULL, maxsurrogate = NULL, usesurrogate = NULL, xval = NULL, surrogatestyle = NULL, maxdepth = NULL, predict.func = NULL, ...)
best.rpart(formula, tunecontrol = tune.control(), ...)
tune.randomForest(x, y = NULL, data = NULL, nodesize = NULL, mtry = NULL, ntree = NULL, ...)
best.randomForest(x, tunecontrol = tune.control(), ...)
tune.knn(x, y, k = NULL, l = NULL, ...)