library("tuneR") # in a regular session, we are loading tuneR
# constructing a mono Wave object (2 sec.) containing sinus
# sound with 440Hz and folled by 220Hz:
Wobj <- bind(sine(440), sine(220))
show(Wobj)
plot(Wobj) # it does not make sense to plot the whole stuff
plot(extractWave(Wobj, from = 1, to = 500))
if (FALSE) {
play(Wobj) # listen to the sound
}
tmpfile <- file.path(tempdir(), "testfile.wav")
# write the Wave object into a Wave file (can be played with any player):
writeWave(Wobj, tmpfile)
# reading it in again:
Wobj2 <- readWave(tmpfile)
Wobjm <- mono(Wobj, "left") # extract the left channel
# and downsample to 11025 samples/sec.:
Wobjm11 <- downsample(Wobjm, 11025)
# extract a part of the signal interactively (click for left/right limits):
if (FALSE) {
Wobjm11s <- extractWave(Wobjm11)
}
# or extract some values reproducibly
Wobjm11s <- extractWave(Wobjm11, from=1000, to=17000)
# calculating periodograms of sections each consisting of 1024 observations,
# overlapping by 512 observations:
WspecObject <- periodogram(Wobjm11s, normalize = TRUE, width = 1024, overlap = 512)
# Let's look at the first periodogram:
plot(WspecObject, xlim = c(0, 2000), which = 1)
# or a spectrogram
image(WspecObject, ylim = c(0, 1000))
# calculate the fundamental frequency:
ff <- FF(WspecObject)
print(ff)
# derive note from FF given diapason a'=440
notes <- noteFromFF(ff, 440)
# smooth the notes:
snotes <- smoother(notes)
# outcome should be 0 for diapason "a'" and -12 (12 halftones lower) for "a"
print(snotes)
# plot melody and energy of the sound:
melodyplot(WspecObject, snotes)
# apply some quantization (into 8 parts):
qnotes <- quantize(snotes, WspecObject@energy, parts = 8)
# an plot it, 4 parts a bar (including expected values):
quantplot(qnotes, expected = rep(c(0, -12), each = 4), bars = 2)
# now prepare for LilyPond
qlily <- quantMerge(snotes, 4, 4, 2)
qlily
Run the code above in your browser using DataLab