
hc.forecast
). The forecast densities are
estimated as the posterior sample for the VAR/BVAR/BSVAR model using Markov Chain
Monte Carlo with data augmentation to account for the uncertainty of
the forecasts and the parameters. This function DOES account for
parameter uncertainty in the MCMC algorithm.
uc.forecast(varobj, nsteps, burnin, gibbs, exog = NULL)
szbvar
or reduced.form.var
burnin
that are returned in the outputNULL
default, they
are set to zero.Waggoner, Daniel F. and Tao Zha. 1999. "Conditional Forecasts in Dynamic Multivariate Models" Review of Economics and Statistics, 81(4):639-651.
hc.forecast
## Not run:
# ## Uses the example from Brandt and Freeman 2006. Will not run unless
# ## you have their data from the Politcal
# ## Analysis website!
# library(MSBVAR) # Brandt's package for Bayesian VAR models
#
# # Read the data and set up as a time series
# data <- read.dta("levant.weekly.79-03.dta")
# attach(data)
#
# # Set up KEDS data
# KEDS.data <- ts(cbind(a2i,a2p,i2a,p2a,i2p,p2i),
# start=c(1979,15),
# freq=52,
# names=c("A2I","A2P","I2A","P2A","I2P","P2I"))
#
# # Select the sample we want to use.
# KEDS <- window(KEDS.data, end=c(1988,50))
#
#
# ################################################################################
# # Estimate the BVAR models
# ################################################################################
#
# # Fit a flat prior model
# KEDS.BVAR.flat <- szbvar(KEDS, p=6, z=NULL, lambda0=1,
# lambda1=1, lambda3=1, lambda4=1, lambda5=0,
# mu5=0, mu6=0, nu=0, qm=4, prior=2,
# posterior.fit=F)
#
# # Reference prior model -- Normal-IW prior pdf
# KEDS.BVAR.informed <- szbvar(KEDS, p=6, z=NULL, lambda0=0.6,
# lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0,
# mu5=0, mu6=0, nu=ncol(KEDS)+1, qm=4, prior=0,
# posterior.fit=F)
#
# # Set up conditional forecast matrix conditions
# nsteps <- 12
# a2i.condition <- rep(mean(KEDS[,1]) + sqrt(var(KEDS[,1])) , nsteps)
#
# yhat<-matrix(c(a2i.condition,rep(0, nsteps*5)), ncol=6)
#
# # Set the random number seed so we can replicate the results.
# set.seed(11023)
#
# # Conditional forecasts
# conditional.forcs.ref <- hc.forecast(KEDS.BVAR.informed, yhat, nsteps,
# burnin=3000, gibbs=5000, exog=NULL)
#
# conditional.forcs.flat <- hc.forecast(KEDS.BVAR.flat, yhat, nsteps,
# burnin=3000, gibbs=5000, exog=NULL)
#
# # Unconditional forecasts
# unconditional.forcs.ref <-uc.forecast(KEDS.BVAR.informed, nsteps,
# burnin=3000, gibbs=5000)
#
# unconditional.forcs.flat <- uc.forecast(KEDS.BVAR.flat, nsteps,
# burnin=3000, gibbs=5000)
#
# # Set-up and plot the unconditional and conditional forecasts. This
# # code pulls for the forecasts for I2P and P2I and puts them into the
# # appropriate array for the figures we want to generate.
# uc.flat <- NULL
# hc.flat <- NULL
# uc.ref <- NULL
# hc.ref <- NULL
#
# uc.flat$forecast <- unconditional.forcs.flat$forecast[,,5:6]
# hc.flat$forecast <- conditional.forcs.flat$forecast[,,5:6]
# uc.ref$forecast <- unconditional.forcs.ref$forecast[,,5:6]
# hc.ref$forecast <- conditional.forcs.ref$forecast[,,5:6]
#
# par(mfrow=c(2,2), omi=c(0.25,0.5,0.25,0.25))
# plot(uc.flat,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),
# compare.level=KEDS[nrow(KEDS),5:6], lwd=2)
# plot(hc.ref,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"),
# compare.level=KEDS[nrow(KEDS),5:6], lwd=2)
#
# ## End(Not run)
Run the code above in your browser using DataLab