Given a umx
model (currently umxACE
and umxGxE
are supported - ask for more!)
umxReduce
will conduct a formalised reduction process. It will also report
Akaike weights are also reported showing relative support across models.
Specialized functions are called for different type of input:
GxE model reduction For umxGxE()
models umxReduceGxE()
is called.
ACE model reduction For umxACE()
models,umxReduceACE()
is called.
umxReduce
reports the results in a table. Set the format of the table with
umx_set_table_format()
, or set report= "html"
to open a
table for pasting into a word processor.
umxReduce
is a work in progress, with more automatic reductions coming as demand emerges.
I am thinking for RAM models to drop NS paths, and report that test.
umxReduce(
model,
report = c("markdown", "inline", "html"),
baseFileName = "tmp",
...
)
The mxModel()
which will be reduced.
How to report the results. "html" = open in browser
(optional) custom filename for html output (defaults to "tmp")
Other parameters to control model summary
Wagenmakers, E.J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin and Review, 11, 192-196. 10.3758/BF03206482
umxReduceGxE()
, umxReduceACE()
Other Model Summary and Comparison:
umxCompare()
,
umxEquate()
,
umxMI()
,
umxSetParameters()
,
umxSummary()
,
umx
Other Twin Modeling Functions:
power.ACE.test()
,
umxACEcov()
,
umxACEv()
,
umxACE()
,
umxCP()
,
umxDoCp()
,
umxDoC()
,
umxGxE_window()
,
umxGxEbiv()
,
umxGxE()
,
umxIP()
,
umxReduceACE()
,
umxReduceGxE()
,
umxRotate.MxModelCP()
,
umxSexLim()
,
umxSimplex()
,
umxSummarizeTwinData()
,
umxSummaryACEv()
,
umxSummaryACE()
,
umxSummaryDoC()
,
umxSummaryGxEbiv()
,
umxSummarySexLim()
,
umxSummarySimplex()
,
umxTwinMaker()
,
umx