Learn R Programming

umx (version 4.9.0)

umxWeightedAIC: AIC weight-based conditional probabilities.

Description

Returns the best model by AIC, and computes the probabilities according to AIC weight-based conditional probabilities (Wagenmakers & Farrell, 2004).

Usage

umxWeightedAIC(models, digits = 2)

Arguments

models

a list of models to compare.

digits

(default 2)

Value

  • Best model

References

See Also

Other Miscellaneous Stats Helpers: FishersMethod(), SE_from_p(), geometric_mean(), harmonic_mean(), oddsratio(), reliability(), umxCov2cor(), umxHetCor(), umx_apply(), umx_cor(), umx_means(), umx_r_test(), umx_round(), umx_scale(), umx_var(), umx

Examples

Run this code
# NOT RUN {
l1 = lm(mpg~ wt + disp, data=mtcars)
l2 = lm(mpg~ wt, data=mtcars)
umxWeightedAIC(models = list(l1, l2))
# }

Run the code above in your browser using DataLab