Learn R Programming

unmarked (version 0.11-0)

unmarkedFrame-class: Class "unmarkedFrame"

Description

Methods for manipulating, summarizing and viewing unmarkedFrames

Arguments

Objects from the Class

Objects can be created by calls to the constructor function unmarkedFrame. These objects are passed to the data argument of the fitting functions.

Slots

y:
Object of class "matrix"
obsCovs:
Object of class "optionalDataFrame"
siteCovs:
Object of class "optionalDataFrame"
mapInfo:
Object of class "optionalMapInfo"
obsToY:
Object of class "optionalMatrix"

Methods

[
signature(x = "unmarkedFrame", i = "numeric", j = "missing", drop = "missing"): ...
[
signature(x = "unmarkedFrame", i = "numeric", j = "numeric", drop = "missing"): ...
[
signature(x = "unmarkedFrame", i = "missing", j = "numeric", drop = "missing"): ...
coordinates
signature(object = "unmarkedFrame"): extract coordinates
getY
signature(object = "unmarkedFrame"): extract y matrix
numSites
signature(object = "unmarkedFrame"): extract M
numY
signature(object = "unmarkedFrame"): extract ncol(y)
obsCovs
signature(object = "unmarkedFrame"): extract observation-level covariates
obsCovs<-
signature(object = "unmarkedFrame"): add or modify observation-level covariates
obsNum
signature(object = "unmarkedFrame"): extract number of observations
obsToY
signature(object = "unmarkedFrame"):
obsToY<-
signature(object = "unmarkedFrame"): ...
plot
signature(x = "unmarkedFrame", y = "missing"): visualize response variable. Takes additional argument panels which specifies how many panels data should be split over.
projection
signature(object = "unmarkedFrame"): extract projection information
show
signature(object = "unmarkedFrame"): view data as data.frame
siteCovs
signature(object = "unmarkedFrame"): extract site-level covariates
siteCovs<-
signature(object = "unmarkedFrame"): add or modify site-level covariates
summary
signature(object = "unmarkedFrame"): summarize data

See Also

unmarkedFrame, unmarkedFit, unmarked-package

Examples

Run this code

# Organize data for pcount()
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
	obsCovs = mallard.obs)


# Vizualize it
plot(mallardUMF)

mallardUMF


# Summarize it
summary(mallardUMF)

str(mallardUMF)

numSites(mallardUMF)

numY(mallardUMF)

obsNum(mallardUMF)


# Extract components of data
getY(mallardUMF)

obsCovs(mallardUMF)
obsCovs(mallardUMF, matrices = TRUE)

siteCovs(mallardUMF)

mallardUMF[1:5,]	# First 5 rows in wide format

mallardUMF[,1:2]	# First 2 observations



Run the code above in your browser using DataLab