Learn R Programming

BinNonNor (version 1.5.3)

validation.skewness.kurtosis: Validates the marginal specification of the continuous non-normal variables

Description

Checks whether the marginal specification of the continuous non-normal part is valid and consistent.

Usage

validation.skewness.kurtosis(n.NN, skewness.vec = NULL, kurtosis.vec = NULL)

Arguments

n.NN

Number of continuous non-normal variables.

skewness.vec

Skewness vector for continuous non-normal variables.

kurtosis.vec

Kurtosis vector for continuous non-normal variables.

Value

The function returns TRUE if no specification problem is encountered. Otherwise, it returns an error message.

References

Demirtas, H., Hedeker, D., and Mermelstein, R.J. (2012). Simulation of massive public health data by power polynomials. Statistics in Medicine, 31(27), 3337-3346.

Examples

Run this code
# NOT RUN {
n.NN<-3
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,8)
validation.skewness.kurtosis(n.NN,skewness.vec,kurtosis.vec)

# }
# NOT RUN {
n.NN<--1
skewness.vec=c(0)
kurtosis.vec=c(-1.2)
validation.skewness.kurtosis(n.NN,skewness.vec,kurtosis.vec)

n.NN<-3
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,5)
validation.skewness.kurtosis(3)

n.NN<-3
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,5)
validation.skewness.kurtosis(n.NN,skewness.vec)
validation.skewness.kurtosis(n.NN,kurtosis.vec)

n.NN<-0
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,8)
validation.skewness.kurtosis(n.NN,skewness.vec,kurtosis.vec)

n.NN<-2
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,8)
validation.skewness.kurtosis(n.NN,skewness.vec,kurtosis.vec)

n.NN<-2
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6)
validation.skewness.kurtosis(n.NN,skewness.vec,kurtosis.vec)

skewness.vec=c(2,3)
kurtosis.vec=c(1,5)
validation.skewness.kurtosis(n.NN,skewness.vec,kurtosis.vec)
# }

Run the code above in your browser using DataLab