########################################################################
# Simulate MA(1) where innovation series is provided via argument innov
########################################################################
set.seed(1234)
n <- 200
phi <- NULL
theta <- 0.6
d <- NA
sigma <- 1.9
Z <- varima.sim(phi, theta, d, sigma, n,innov=rnorm(n))
plot(Z)
#to save time the other examples are not run
########################################################################
# Simulate ARIMA(2,1,0) process with phi=c(1.3,-0.35), Gaussian innovations
# The series is truncated at lag 50
########################################################################
set.seed(1234)
Trunc.Series <- 40
n <- 1000
phi <- c(1.3, -0.35)
theta <- NULL
d <- 1
sigma <- 1
Z <- varima.sim(phi,theta,d,sigma,n,Trunc.Series=Trunc.Series)
coef(arima(Z,order=c(2,1,0)))
########################################################################
# Simulate MA(1) process with theta = 0.5, t5-distribution innovations
########################################################################
set.seed(1234)
n <- 200
phi <- NULL
theta <- 0.5
Z <- varima.sim(phi, theta, sigma=1, n=n, innov.dist="t", df=5)
plot(Z)
########################################################################
# Simulate univariate ARMA(2,1) process with length 500,
# phi = c(1.3, -0.35), theta = 0.1. Drift equation is 8 + 0.05*t
# Stable innovations with: ALPHA = 1.75, BETA = 0, GAMMA = 1, DELTA = 0
########################################################################
set.seed(1234)
n <- 500
phi <- c(1.3, -0.35)
theta <- 0.1
constant <- 8
trend <- 0.05
demean <- 0
d <- 0
sigma <- 0.7
ALPHA <- 1.75
BETA <- 0
GAMMA <- 1
DELTA <- 0
Stable <- c(ALPHA,BETA,GAMMA,DELTA)
Z <- varima.sim(phi,theta,d,sigma,n,constant,trend,demean,
innov.dist="stable",StableParameters=Stable)
plot(Z)
########################################################################
# Simulate a bivariate white noise series from a multivariate t4-distribution
########################################################################
set.seed(1234)
Z <- varima.sim(sigma=diag(2),n=200,innov.dist="t",df=4)
plot(Z)
########################################################################
# Simulate a trivariate VARMA(1,1) process with length 300.
# phi = array(c(0.5,0.4,0.1,0.5,0,0.3,0,0,0.1), dim=c(k,k,1)), where k =3
# theta = array(c(0,0.25,0,0.5,0.1,0.4,0,0.25,0.6), dim=c(k,k,1)).
# innovations are generated from multivariate normal distribution
# The process have mean c(10, 0, 12),
# Drift equation a + b * t, where a = c(2,1,5), and b = c(0.01,0.06,0)
# The series is truncated at default value: Trunc.Series=ceiling(100/3)=34
########################################################################
set.seed(1234)
k <- 3
n <- 300
Trunc.Series <- 50
phi <- array(c(0.5,0.4,0.1,0.5,0,0.3,0,0,0.1),dim=c(k,k,1))
theta <- array(c(0,0.25,0,0.5,0.1,0.4,0,0.25,0.6),dim=c(k,k,1))
sigma <- diag(k)
constant <- c(2,1,5)
trend <- c(0.01,0.06,0)
demean <- c(10,0,12)
Z <- varima.sim(phi, theta, d = 0,sigma, n, constant,trend,demean)
plot(Z)
########################################################################
# Simulate a bivariate VARIMA(2,d,1) process with length 300, where d=(1,2).
# phi = array(c(0.5,0.4,0.1,0.5,0,0.3,0,0),dim=c(k,k,2)),
# theta = array(c(0,0.25,0,0), dim=c(k,k,1)).
# innovations are generated from multivariate normal
# The process have mean zero and no deterministic terms.
# The variance covariance is sigma = matrix(c(1,0.71,0.71,2),2,2).
# The series is truncated at default value: Trunc.Series=ceiling(100/3)=34
########################################################################
set.seed(1234)
k <- 2
n <- 300
Trunc.Series <- 50
phi <- array(c(0.5,0.4,0.1,0.5,0,0.3,0,0),dim=c(k,k,2))
theta <- array(c(0,0.25,0,0),dim=c(k,k,1))
d <- c(1,2)
sigma <- matrix(c(1,0.71,0.71,2),k,k)
Z <- varima.sim(phi, theta, d, sigma, n)
plot(Z)
########################################################################
# Simulate a bivariate VAR(1) process with length 600.
# Stable distribution: ALPHA=(1.3,1.6), BETA=(0,0.2), GAMMA=(1,1), DELTA=(0,0.2)
# The series is truncated at default value: Trunc.Series=min(100,200)=100
########################################################################
set.seed(1234)
k <- 2
n <- 600
phi <- array(c(-0.2,-0.6,0.3,1.1),dim=c(k,k,1))
theta <- NULL
d <- NA
sigma <- matrix(c(1,0.71,0.71,2),k,k)
ALPHA <- c(1.3,1.6)
BETA <- c(0,0.2)
GAMMA <-c(1,1)
DELTA <-c(0,0.2)
Stable <- c(ALPHA,BETA,GAMMA,DELTA)
Z <- varima.sim(phi,theta,d,sigma,n,innov.dist="stable",StableParameters=Stable)
plot(Z)
Run the code above in your browser using DataLab