variog4(geodata, coords = geodata$coords, data = geodata$data,
uvec = "default", trend = "cte", lambda = 1,
option = c("bin", "cloud", "smooth"),
estimator.type = c("classical", "modulus"),
nugget.tolerance = 0, max.dist = NULL, pairs.min = 2,
bin.cloud = FALSE, direction = c(0, pi/4, pi/2, 3*pi/4),
tolerance = pi/8, unit.angle = c("radians", "degrees"),
messages.screen = TRUE, ...)
coords
as described next. Typically an object of the class
"geodata"
- a geoR data-set.
If not provided the arguments
coords
must be provided instead.geodata$coords
, if provided.geodata$data
, if provided.option = "bin"
. The values of uvec
defines the mid-points of the bins.
If $uvec[1] > 0$ the first bin is: $0 < u "cte"
(constant mean),
"1st"
(a first degree polynomial
on the coordinates), "2nd"
(a second degree polynomial
on the coordinates), or a form"bin"
returns values of
binned variogram, "cloud"
returns the variogram cloud and
"smooth"
returns the kernel smoothed variogram.
Defaults to "bin"
."classical"
computes the classical method of
moments estimator. "modulus"
returns the variogram
estimator suggested by Hawkins and Cressie (see Cressie, 1993, pg 75).
Defaults to "classical"
.option = "bin"
,
bins with number of pairs smaller than this
value are ignored. Defaults to NULL
.TRUE
and
option = "bin"
the cloud values for each class are
included in the output. Defaults to FALSE
.c(0, 45, 90, 135)
(degrees)."degrees"
and "radians"
.ksmooth
, if
option = "smooth"
.variog4
,
a list with five components.
The first four elements are estimated variograms for the directions
provided and the last is the omnidirectional variogram.
Each individual component is an object of the class variogram
,
an output of the function variog
.variog
for variogram calculations and
plot.variog4
for plotting resultsif(is.R()) data(s100)
var4 <- variog4(s100, max.dist=1)
plot(var4)
Run the code above in your browser using DataLab