Learn R Programming

GDAtools (version 1.3)

varsup: Computes statistics for a categorical supplementary variable

Description

From MCA results, computes statistics (weights, coordinates, contributions, test-values, variances) for a categorical supplementary variable.

Usage

varsup(resmca, var)

Arguments

resmca
object of class 'MCA', 'speMCA', 'csMCA', 'stMCA' or 'multiMCA'
var
the categorical supplementary variable. It does not need to have been used at the MCA step.

Value

Returns a list:
weight
numeric vector of categories weights
coord
data frame of categories coordinates
cos2
data frame of categories square cosine
var
data frame of categories within variances, variance between and within categories and variable square correlation ratio (eta2)
v.test
data frame of categories test-values

References

Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).

Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).

See Also

speMCA, csMCA, multiMCA, textvarsup

Examples

Run this code
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then computes statistics for age supplementary variable.
data(Music)
getindexcat(Music)
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
varsup(mca,Music$Age)

Run the code above in your browser using DataLab