Learn R Programming

actuar (version 3.3-5)

Actuarial Functions and Heavy Tailed Distributions

Description

Functions and data sets for actuarial science: modeling of loss distributions; risk theory and ruin theory; simulation of compound models, discrete mixtures and compound hierarchical models; credibility theory. Support for many additional probability distributions to model insurance loss size and frequency: 23 continuous heavy tailed distributions; the Poisson-inverse Gaussian discrete distribution; zero-truncated and zero-modified extensions of the standard discrete distributions. Support for phase-type distributions commonly used to compute ruin probabilities. Main reference: . Implementation of the Feller-Pareto family of distributions: .

Copy Link

Version

Install

install.packages('actuar')

Monthly Downloads

34,563

Version

3.3-5

License

GPL (>= 2)

Maintainer

Vincent Goulet

Last Published

January 9th, 2025

Functions in actuar (3.3-5)

InverseGaussian

The Inverse Gaussian Distribution
GeneralizedBeta

The Generalized Beta Distribution
Burr

The Burr Distribution
InverseTransformedGamma

The Inverse Transformed Gamma Distribution
InversePareto

The Inverse Pareto Distribution
Extract.grouped.data

Extract or Replace Parts of a Grouped Data Object
Gumbel

The Gumbel Distribution
GeneralizedPareto

The Generalized Pareto Distribution
ChisqSupp

Moments and Moment Generating Function of the (non-central) Chi-Squared Distribution
InverseExponential

The Inverse Exponential Distribution
Paralogistic

The Paralogistic Distribution
InverseParalogistic

The Inverse Paralogistic Distribution
InverseGamma

The Inverse Gamma Distribution
Loglogistic

The Loglogistic Distribution
Loggamma

The Loggamma Distribution
WeibullMoments

Raw and Limited Moments of the Weibull Distribution
Pareto2

The Pareto II Distribution
Pareto

The Pareto Distribution
Pareto3

The Pareto III Distribution
InverseBurr

The Inverse Burr Distribution
ZeroModifiedGeometric

The Zero-Modified Geometric Distribution
Pareto4

The Pareto IV Distribution
PoissonInverseGaussian

The Poisson-Inverse Gaussian Distribution
ZeroTruncatedNegativeBinomial

The Zero-Truncated Negative Binomial Distribution
ZeroModifiedLogarithmic

The Zero-Modified Logarithmic Distribution
PhaseType

The Phase-type Distribution
UniformSupp

Moments and Moment Generating Function of the Uniform Distribution
VaR

Value at Risk
ZeroModifiedNegativeBinomial

The Zero-Modified Negative Binomial Distribution
ZeroModifiedBinomial

The Zero-Modified Binomial Distribution
SingleParameterPareto

The Single-parameter Pareto Distribution
quantile.grouped.data

Quantiles of Grouped Data
actuar-package

tools:::Rd_package_title("actuar")
cm

Credibility Models
ZeroTruncatedPoisson

The Zero-Truncated Poisson Distribution
ZeroModifiedPoisson

The Zero-Modified Poisson Distribution
coverage

Density and Cumulative Distribution Function for Modified Data
elev

Empirical Limited Expected Value
adjCoef

Adjustment Coefficient
InverseWeibull

The Inverse Weibull Distribution
rmixture

Simulation from Discrete Mixtures
Logarithmic

The Logarithmic Distribution
ZeroTruncatedGeometric

The Zero-Truncated Geometric Distribution
ZeroTruncatedBinomial

The Zero-Truncated Binomial Distribution
NormalSupp

Moments and Moment generating function of the Normal Distribution
LognormalMoments

Raw and Limited Moments of the Lognormal Distribution
emm

Empirical Moments
dental

Individual Dental Claims Data Set
mde

Minimum Distance Estimation
mean.grouped.data

Arithmetic Mean
gdental

Grouped Dental Claims Data Set
ruin

Probability of Ruin
TransformedBeta

The Transformed Beta Distribution
severity

Manipulation of Individual Claim Amounts
discretize

Discretization of a Continuous Distribution
TransformedGamma

The Transformed Gamma Distribution
grouped.data

Grouped data
unroll

Display a Two-Dimension Version of a Matrix of Vectors
ogive

Ogive for Grouped Data
var

Variance and Standard Deviation
quantile.aggregateDist

Quantiles of Aggregate Claim Amount Distribution
rcomphierarc

Simulation from Compound Hierarchical Models
aggregateDist

Aggregate Claim Amount Distribution
betaint

The “Beta Integral”
hachemeister

Hachemeister Data Set
hist.grouped.data

Histogram for Grouped Data
rcomphierarc.summaries

Summary Statistics of a Portfolio
rcompound

Simulation from Compound Models
FellerPareto

The Feller Pareto Distribution
BetaMoments

Raw and Limited Moments of the Beta Distribution
ExponentialSupp

Moments and Moment Generating Function of the Exponential Distribution
CTE

Conditional Tail Expectation
GammaSupp

Moments and Moment Generating Function of the Gamma Distribution