Learn R Programming

semTools (version 0.4-11)

wald: Calculate multivariate Wald statistics

Description

Calculate multivariate Wald statistics based on linear combinations of model parameters

Usage

wald(object, syntax)

Arguments

object
An output from lavaan
syntax
Syntax that each line represents one linear constraint. A plus or minus sign is used to separate between each coefficient. An asterisk is used to separate between coefficients and parameters. The coefficient can have a forward slash to represent a divisio

Value

  • Chi-square value with p value.

Details

The formula for multivariate Wald test is

$$\chi^2 = \left(C\hat{b}\right)^\prime\left[C\hat{V}C^\prime\right]^{-1}\left(C\hat{b}\right),$$

where $C$ is the contrast matrix, $\hat{b}$ is the estimated fixed effect, $\hat{V}$ is the asymptotic covariance matrix among fixed effects.

Examples

Run this code
# Test the difference in factor loadings
library(lavaan)
HS.model <- ' visual  =~ x1 + con1*x2 + con1*x3
              textual =~ x4 + x5 + x6
              speed   =~ x7 + con2*x8 + con2*x9 '

fit <- cfa(HS.model, data=HolzingerSwineford1939)
wald(fit, "con2 - con1")

# Simultaneously test the difference in the influences 
# of x1 and x2 on intercept and slope
model.syntax <- '
    i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
    s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4
    i ~ x1 + x2
    s ~ x1 + x2
    t1 ~ c1
    t2 ~ c2
    t3 ~ c3
    t4 ~ c4
'

fit2 <- growth(model.syntax, data=Demo.growth)
wald.syntax <- '
	i~x1 - i~x2
	1/2*s~x1 - 1/2*s~x2
'
wald(fit2, wald.syntax)

# Mplus example of MODEL TEST
model3 <- ' f1  =~ x1 + p2*x2 + p3*x3 + p4*x4 + p5*x5 + p6*x6
			p4 == 2*p2'

fit3 <- cfa(model3, data=HolzingerSwineford1939)
wald(fit3, "p3; p6 - 0.5*p5")

Run the code above in your browser using DataLab