The width (Chanas, 2001) is a measure of nonspecificity of a fuzzy number.
# S4 method for FuzzyNumber
width(object, ...)
a fuzzy number
additional arguments passed to expectedInterval
Returns a single numeric value.
The width of \(A\) is defined as
\(width(A) := EI_U(A) - EI_L(A)\),
where \(EI\) is the expectedInterval
.
Chanas S. (2001), On the interval approximation of a fuzzy number, Fuzzy Sets and Systems 122, pp. 353-356.
Other FuzzyNumber-method:
Arithmetic
,
Extract
,
FuzzyNumber-class
,
FuzzyNumber
,
alphaInterval()
,
alphacut()
,
ambiguity()
,
as.FuzzyNumber()
,
as.PiecewiseLinearFuzzyNumber()
,
as.PowerFuzzyNumber()
,
as.TrapezoidalFuzzyNumber()
,
as.character()
,
core()
,
distance()
,
evaluate()
,
expectedInterval()
,
expectedValue()
,
integrateAlpha()
,
piecewiseLinearApproximation()
,
plot()
,
show()
,
supp()
,
trapezoidalApproximation()
,
value()
,
weightedExpectedValue()
Other characteristics:
ambiguity()
,
expectedValue()
,
value()
,
weightedExpectedValue()