## Not run:
# library(org.Dm.eg.db)
# library(KEGG.db)
# library(AnnotationDbi)
# ##library(igraph)
# ##load data for enrichment analyses
# data("KcViab_Data4Enrich")
# ##select hits
# hits <- names(KcViab_Data4Enrich)[which(abs(KcViab_Data4Enrich) > 2)]
# ##set up a list of gene set collections
# PW_KEGG <- KeggGeneSets(species = "Dm")
# gscs <- list(PW_KEGG = PW_KEGG)
# ##create an object of class 'GSCA'
# gsca <- new("GSCA", listOfGeneSetCollections=gscs, geneList =
# KcViab_Data4Enrich, hits = hits)
# ##do preprocessing (KcViab_Data4Enrich has already been preprocessed)
# gsca <- preprocess(gsca, species="Dm", initialIDs = "Entrez.gene",
# keepMultipleMappings = TRUE, duplicateRemoverMethod = "max",
# orderAbsValue = FALSE)
# ##do hypergeometric tests and GSEA
# gsca <- analyze(gsca, para = list(pValueCutoff = 0.05, pAdjustMethod
# = "BH", nPermutations = 1000, minGeneSetSize = 60, exponent = 1))
# ##print summary information
# summarize(gsca)
# ##get all significant gene sets in "PW_KEGG"
# sigGSs<-getTopGeneSets(gsca, "GSEA.results", "PW_KEGG", allSig=TRUE)
# ##view a GSEA figure
# viewGSEA(gsca, gscName="PW_KEGG", gsName=sigGSs[["PW_KEGG"]][1])
# dev.off()
# ##append gene set terms to results
# gsca<-appendGSTerms(gsca, keggGSCs="PW_KEGG")
# ##view an enrichment map for GSEA results
# eb<-viewEnrichMap(gsca, gscs="PW_KEGG", allSig=TRUE, gsNameType="term",
# displayEdgeLabel=FALSE, layout="layout.fruchterman.reingold")
# ##write html reports
# report(object = gsca, experimentName = "GSCATest", species = "Dm",
# allSig = TRUE, keggGSCs = "PW_KEGG", reportDir="GSCATestReport")
# ##browse the index page
# browseURL(file.path(getwd(), "GSCATestReport", "index.html"))
# ## End(Not run)
Run the code above in your browser using DataLab