
Create a contingency table (optionally a sparse matrix) from cross-classifying factors, usually contained in a data frame, using a formula interface.
xtabs(formula = ~., data = parent.frame(), subset, sparse = FALSE,
na.action, addNA = FALSE, exclude = if(!addNA) c(NA, NaN),
drop.unused.levels = FALSE)# S3 method for xtabs
print(x, na.print = "", …)
a formula object with the cross-classifying variables
(separated by +
) on the right hand side (or an object which
can be coerced to a formula). Interactions are not allowed. On the
left hand side, one may optionally give a vector or a matrix of
counts; in the latter case, the columns are interpreted as
corresponding to the levels of a variable. This is useful if the
data have already been tabulated, see the examples below.
an optional matrix or data frame (or similar: see
model.frame
) containing the variables in the
formula formula
. By default the variables are taken from
environment(formula)
.
an optional vector specifying a subset of observations to be used.
logical specifying if the result should be a
sparse matrix, i.e., inheriting from
sparseMatrix
Only works for two factors (since there
are no higher-order sparse array classes yet).
logical indicating if NA
s should get a separate
level and be counted, using addNA(*, ifany=TRUE)
and
setting the default for na.action
.
a vector of values to be excluded when forming the set of levels of the classifying factors.
a logical indicating whether to drop unused
levels in the classifying factors. If this is FALSE
and
there are unused levels, the table will contain zero marginals, and
a subsequent chi-squared test for independence of the factors will
not work.
an object of class "xtabs"
.
character string (or NULL
) indicating how
NA
are printed. The default (""
) does not show
NA
s clearly, and na.print = "NA"
maybe advisable
instead.
further arguments passed to or from other methods.
By default, when sparse = FALSE
,
a contingency table in array representation of S3 class c("xtabs",
"table")
, with a "call"
attribute storing the matched call.
When sparse = TRUE
, a sparse numeric matrix, specifically an
object of S4 class
dgTMatrix
from package
Matrix.
There is a summary
method for contingency table objects created
by table
or xtabs(*, sparse = FALSE)
, which gives basic
information and performs a chi-squared test for independence of
factors (note that the function chisq.test
currently
only handles 2-d tables).
If a left hand side is given in formula
, its entries are simply
summed over the cells corresponding to the right hand side; this also
works if the lhs does not give counts.
For variables in formula
which are factors, exclude
must be specified explicitly; the default exclusions will not be used.
In R versions before 3.4.0, e.g., when na.action = na.pass
,
sometimes zeroes (0
) were returned instead of NA
s.
table
for traditional cross-tabulation, and
as.data.frame.table
which is the inverse operation of
xtabs
(see the DF
example below).
sparseMatrix
on sparse
matrices in package Matrix.
# NOT RUN {
## 'esoph' has the frequencies of cases and controls for all levels of
## the variables 'agegp', 'alcgp', and 'tobgp'.
xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)
## Output is not really helpful ... flat tables are better:
ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))
## In particular if we have fewer factors ...
ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))
## This is already a contingency table in array form.
DF <- as.data.frame(UCBAdmissions)
## Now 'DF' is a data frame with a grid of the factors and the counts
## in variable 'Freq'.
DF
## Nice for taking margins ...
xtabs(Freq ~ Gender + Admit, DF)
## And for testing independence ...
summary(xtabs(Freq ~ ., DF))
## with NA's
DN <- DF; DN[cbind(6:9, c(1:2,4,1))] <- NA; DN
tools::assertError(# 'na.fail' should fail :
xtabs(Freq ~ Gender + Admit, DN, na.action=na.fail))
xtabs(Freq ~ Gender + Admit, DN)
xtabs(Freq ~ Gender + Admit, DN, na.action = na.pass)
## The Female:Rejected combination has NA 'Freq' (and NA prints 'invisibly' as "")
xtabs(Freq ~ Gender + Admit, DN, addNA = TRUE) # ==> count NAs
## Create a nice display for the warp break data.
warpbreaks$replicate <- rep_len(1:9, 54)
ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))
### ---- Sparse Examples ----
# }
# NOT RUN {
if(require("Matrix")) withAutoprint({
## similar to "nlme"s 'ergoStool' :
d.ergo <- data.frame(Type = paste0("T", rep(1:4, 9*4)),
Subj = gl(9, 4, 36*4))
xtabs(~ Type + Subj, data = d.ergo) # 4 replicates each
set.seed(15) # a subset of cases:
xtabs(~ Type + Subj, data = d.ergo[sample(36, 10), ], sparse = TRUE)
## Hypothetical two-level setup:
inner <- factor(sample(letters[1:25], 100, replace = TRUE))
inout <- factor(sample(LETTERS[1:5], 25, replace = TRUE))
fr <- data.frame(inner = inner, outer = inout[as.integer(inner)])
xtabs(~ inner + outer, fr, sparse = TRUE)
})
# }
# NOT RUN {
<!-- % only if Matrix is available -->
# }
Run the code above in your browser using DataLab