Learn R Programming

JohnsonDistribution (version 0.24)

zJohnsonDistribution: Johnson variable (Y) to standard normal (Z) transformation

Description

A Johnson distribution variable with specified parameters is transformed to a unit normal variable and can be used to compute percentiles.

Usage

zJohnsonDistribution(s, ITYPE, GAMMA, DELTA, XLAM, XI)

Arguments

s
value of Johnson distribution variable. May be vector
ITYPE
is 1, SL; 2 for SU, 3 for SB and 4 for Normal
GAMMA
parameter in Johnson distribution
DELTA
parameter in Johnson distribution
XLAM
parameter in Johnson distribution
XI
parameter in Johnson distribution

Value

Corresponding vector of standard normal variables.

Details

Our function provides an interface to the Fortran algorithm AS 100 (Hill, 1976).

References

I. D. Hill, Algorithm AS 100. Normal-Johnson and Johnson-normal transformations, Appl. Statist.,25, No. 2, 190-192 (1976).

See Also

yJohnsonDistribution, FitJohnsonDistribution

Examples

Run this code
#
#Example: find the percentage points for an SL distribution
#    with mean 1, standard deviation 1, skewness 3
#    corresponding to observed values 1, 2, 3, 4, 5
ans <- FitJohnsonDistribution(1, 1, 3, -1)
GAMMA <- ans["GAMMA"]
DELTA <- ans["DELTA"]
XLAM <- ans["XLAM"]
XI <- ans["XI"]
ITYPE <- 1
y <- 1:5
Z <- zJohnsonDistribution(y, ITYPE, GAMMA, DELTA, XLAM, XI)
pnorm(Z)

Run the code above in your browser using DataLab