zeta(x, deriv = 0)
x
may be real.
If deriv
is 1 or 2 then x
must be real and positive.x
with Re(x)<1< code=""> because currently the
gamma
function does not handle complex
arguments.
The formula used here for analytic continuation is
Edwards, H. M. (1974) Riemann's Zeta Function. Academic Press: New York.
Markman, B. (1965) The Riemann zeta function. BIT, 5, 138--141.
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications Inc.
zetaff
,
lerch
,
gamma
.zeta(2:10)
curve(zeta, -13, 0.8, xlim = c(-12, 10), ylim = c(-1, 4), col = "orange",
las = 1, main = expression({zeta}(x)))
curve(zeta, 1.2, 12, add = TRUE, col = "orange")
abline(v = 0, h = c(0, 1), lty = "dashed", col = "gray")
# Close up plot:
curve(zeta, -14, -0.4, col = "orange", main = expression({zeta}(x)))
abline(v = 0, h = 0, lty = "dashed", col = "gray")
x <- seq(0.04, 0.8, len = 100) # Plot of the first derivative
plot(x, zeta(x, deriv = 1), type = "l", las = 1, col = "blue",
xlim = c(0.04, 3), ylim = c(-6, 0), main = "zeta'(x)")
x <- seq(1.2, 3, len = 100)
lines(x, zeta(x, deriv = 1), col = "blue")
abline(v = 0, h = 0, lty = "dashed", col = "gray")
zeta(2) - pi^2 / 6 # Should be zero
zeta(4) - pi^4 / 90 # Should be zero
zeta(6) - pi^6 / 945 # Should be 0
zeta(8) - pi^8 / 9450 # Should be 0
# zeta(0, deriv = 1) + 0.5 * log(2*pi) # Should be 0
Run the code above in your browser using DataLab