ts<- aat_simulate(pullfx = 50, stimfx = 10, biasfx = 100)
mod<-lm(rt~is_pull*is_target,data=ts)
coef(mod) #these should be somewhat close to the provided coefficients
# Here's how one might derive the parameters used in this function from a real dataset
if (FALSE) {
mod<-lmer(decisiontime ~ is_pull * is_food + (is_pull * is_food | subjectid),data=dsa)
fixef(mod) # from here, all the fx and mean RTs are derived
ranef(mod)$subjectid %>% apply(2,sd) #from here, all the fx jitters are derived
dsa %>% group_by(subjectid) %>% summarise(sd=sd(resid)) %>%
summarise(m=mean(sd),s=sd(sd)) # from here, sdrt_jitter is derived
}
hist(aat_simulate2(defaults="Lender2018_relevant_raw",slowols=10,fastols=10)$rt)
Run the code above in your browser using DataLab